DOI QR코드

DOI QR Code

A User's Location Localization Method using Smartphone Sensor on a Subway

지하철에서 스마트폰 센서를 이용한 사용자 위치 추적 방법

  • Cho, Jung-Gil (Department of Computer Engineering, Sungkyul University)
  • 조정길 (성결대학교 컴퓨터공학과)
  • Received : 2020.01.15
  • Accepted : 2020.03.20
  • Published : 2020.03.28

Abstract

Smartphone-based localization has been widely studied in many different scenarios. But as far as we know, few work has addressed the problem of localization in underground public transportation systems, where GPS signal and wireless infrastructure are not always available. Knowing the location of a train is necessary to develop a useful service for subway passengers. And so, estimation of motion state and stop station by using sensors on a smartphone is being studied for subway passengers. This paper proposes a localization method that uses a barometer and a magnetic sensor on a smartphone. The method proposed in this paper first estimates whether the train runs or stops according to the change in air pressure and the strength of the magnetic field. The altitude value and the magnetic field value are then used to estimate the exact stop station of the train. We evaluated the proposed method using data from the Seoul's subway line 5. Compared with previous methods, the proposed method achieves higher accuracy.

스마트폰 기반의 추적은 다양한 시나리오에서 널리 연구되어왔다. 그러나 우리가 아는 한, GPS 신호 및 무선 인프라가 항상 이용 가능하지 않는 지하 대중교통 시스템의 추적 문제를 해결한 연구는 극소수에 불과하다. 전동차의 위치를 아는 것은 지하철 승객에게 유용한 서비스를 개발하는데 필요하다. 따라서 지하철 승객을 대상으로 스마트폰 센서를 이용하여 모션 상태 및 정차역을 추정하는 방법이 연구되고 있다. 이 논문에서는 스마트폰의 기압계와 자기 센서를 이용하는 추적 방법을 제안한다. 이 논문에서 제안된 방법은 먼저 기압의 변동 및 자기장의 세기에 따라 전동차가 운행하는지 정차하는지를 추정한다. 그 다음에 고도 값과 자기장 값으로 전동차가 정차하는 정확한 역을 추정한다. 우리는 서울의 지하철 5호선 데이터를 사용하여 제안된 방법을 평가했다. 이전 방법과 비교하여 제안된 방법은 더 높은 정확성을 얻었다.

Keywords

References

  1. D. H. Kwon, S. H. Jang, H. J. Mun & M. H. Chey. (2019). The Running Vibration Assessment of Daegu Metropolitan Transit using Smartphone Acceleration Sensor. Journal of the Korea Convergence Society, 10(6), 179-184. DOI : 10.15207/JKCS.2019.10.6.179
  2. D. H. Choi. (2019). A Study on Smartphone Addiction and Mental Health Trend Improvement in Koreans. Journal of Convergence for Information Technology, 9(11), 22-27. DOI : 10.22156/CS4SMB.2019.9.11.022
  3. G. Liu, J. Liu, F. Li, X. Ma, Y. Chen & H. Liu. (2017). SubTrack: Enabling Real-Time Tracking of Subway Riding on Mobile Devices. 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems(MASS), 90-98. DOI : 10.1109/MASS.2017.55
  4. A. Thiagarajan, J. Biagioni, T. Gerlich & J. Eriksson. (2010). Cooperative transit tracking using smartphones. in SenSys ', 10, 85-98.
  5. P. Zhou, Y. Zheng, & M. Li. (2012). How long to wait?: predicting bus arrival time with mobile phone based participatory sensing. in MobiSys, 12, 379-392.
  6. S. S. Kim, J. W. Kim & D. S. Han. (2017). Floor Detection Using a Barometer Sensor in a Smartphone. 2017 Indoor Positioning and Indoor Navigation(IPIN2017).
  7. J. S. Jeon, Y. S. Kong, Y. Y. Nam & K. B. Yim. (2015). An Indoor Positioning System Using Bluetooth RSSI with an Acceleroeter and a Barometer on a Smartphone. 2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA). DOI : 10.1109/BWCCA.2015.142
  8. K. Muralidharan, A. J. Khan & A. Misra. (2014). Barometric Phone Sensors- More Hype Than Hope!. Proceedings of the 15th Workshop on Mobile Computing Systems and Applications. DOI : 10.1145/2565585.2565596
  9. W. Gu, M. Jin. Z. Zhou, C. J. Spanos & L. Zhang. (2016). MetroEye: Smart Tracking Your Metro Trips Underground. Computer Science Published in MOBIQUITOUS 2016(MobiQuitous, 2016), 84-93. DOI : 10.1145/2994374.2994381
  10. H. Shin, G. W. Lee & D. S. Han. (2018). Subway STOP/Departure Detection using a Magnetic Sensor of the Smartphone. ICVISP 2018: Proceedings of the 2nd International Conference on Vision, Image and Signal Processing, 1-5. DOI : 10.1145/3271553.3271614
  11. T. Stockx, B. Hecht & J. Schoning. (2014). Subwayps: Towards smartphone positioning in underground public transportation systems. in SIGSPATIAL, 14, 93-102.
  12. S. Hyuga, M. Ito, M. Iwai & K. Sezaki. (2016). An Online Localization Method for a Subway Train Utilizing the Barometer on a Smartphone. in SIGSPATIAL '16, 5, 1-4.
  13. T. Watanabe, D. Kamisaka, S. Muramatsu & H. Yokoyama. (2012). At which station am I?: Identifying subway stations using only a pressure sensor. 2012 16th International Symposium on Wearable Computers. DOI : 10.1109/ISWC.2012.18
  14. K. Sankaran, M. Zhu, X. F. Guo & A. L. Ananda. (2014). Using mobile phone barometer for low-power transportation context detection. Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, 191-205.
  15. T. Willemsen, F. Keller & H. Sternberg. (2014). Concept for building a mems based indoor localization system. 2014 International Conference on Indoor Positioning and Indoor Navigation(IPIN), 1-10. DOI : 10.1109/IPIN.2014.7275461
  16. G. Lee & D. Han. (2014). Subway train stop detection using magnetometer sensing data. 2014 International Conference on Indoor Positioning and Indoor Navigation(IPIN), 766-769. DOI : 10.1109/IPIN.2014.7275562
  17. M. Havas, S. Shum & D. Raheman. (2004). Passenger exposure to magnetic fields on go-trains and on buses, streetcars, and subways run by the toronto transit commission. Biological Effects of EMFs, 3rd International Workshop, 1065-1071.