DOI QR코드

DOI QR Code

단위중량 2,000kg/㎥급 고강도 시멘트 복합체 개발을 위한 기초연구

Preliminary Study on Development of High Strength Cement Composites at 2,000kg/㎥ of Specific Weight

  • 정연웅 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 임귀환 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 강용학 ((재)한국건설생활환경시험연구원 대구경북지원) ;
  • 정상화 ((재)한국건설생활환경시험연구원 영남본부) ;
  • 김주형 ((재)한국건설생활환경시험연구원 건설기술연구센터)
  • Jeong, Yeon-Ung (Construction Technology Research Center, Korea Conformity Laboratories) ;
  • Lim, Gwi-Hwan (Construction Technology Research Center, Korea Conformity Laboratories) ;
  • Kang, Yong-Hak (Daegu & Gyeongbuk Branch, Korea Conformity Laboratories) ;
  • Jung, Sang-hwa (Yeongnam Division, Korea Conformity Laboratories) ;
  • Kim, Joo-Hyung (Construction Technology Research Center, Korea Conformity Laboratories)
  • 투고 : 2020.11.18
  • 심사 : 2020.12.10
  • 발행 : 2020.12.30

초록

본 연구에서는 단위중량 2,000kg/㎥ 이하의 고강도 시멘트 복합체 제조기술 및 기초 물성을 탐구한다. 선행연구에서 제시한 초고성능콘크리트의 배합에서 잔골재를 경량 재료인 솔리드 버블과 경량잔골재로 치환하여 경량 고강도 시멘트 복합체를 제조기술을 제안한다. 솔리드 버블을 혼입한 시멘트 복합체는 밀도 2.0g/㎤ 이하에서 재령 28일 강도 116MPa~141MPa의 고강도 발현이 가능한 것으로 나타났다. 경량잔골재를 사용하는 경우 솔리드 버블을 혼입한 시멘트 복합체보다 역학적 성능이 떨어지는 것으로 나타났다. 배합표상에서 계산된 단위용적중량과 경화된 시멘트 복합체의 밀도가 큰 차이를 보이지 않았으며, 이는 배합표상에서 계산된 단위용적중량을 통해 경화된 시멘트 복합체의 밀도를 추정할 수 있는 것을 보여준다.

This study explores manufacturing technology and basic properties of high strength cement composites at 2,000kg/㎥ of specific weight. It is suggested that lightweight-high strength cement composites can be produced by substituting silica sand in ulta-high performance concrete mixture with lightweight materials such as solid bubbles and lightweight fine aggregates. The 28-day compressive strengths of cement composites with solid bubbles were from 116MPa to 141MPa at below 2.0g/㎤ of unit density while the cement composites with lightweight aggregates possessed lower compressive strength and higher unit density. The specific weight calculated from mixture proportions did not have significant difference with unit density of hardened cement composites, indicating that unit density of hardened cement composites can be estimated from the specific weight in mixture proportions.

키워드

참고문헌

  1. Aslam, M., Shafigh, P., Jumaat, M.Z. (2016). Oil-palm by-products as lightweight aggregate in concrete mixture: a review, Journal of Cleaner Production, 126, 56-73. https://doi.org/10.1016/j.jclepro.2016.03.100
  2. Choi, S.J., Kim, D.B., Lee, K.S., Kim, Y.U. (2019). The study on the physical and strength properties of lightweight concrete by replacement ratio of artificial lightweight aggregate, Journal of the Korea Institute of Building Construction, 19(4), 313-322 [in Korean]. https://doi.org/10.5345/JKIBC.2019.19.4.313
  3. Choi, H.B., Kim, J.M. (2018). Fundamental properties of lightweight concrete with dry bottom ash as fine aggregate and burned artificial lightweight aggregate as corse aggregate, Journal of Korean Recycled Construction Resources Institutute, 6(4), 267-274 [in Korean].
  4. de Larrard, F., Sedran, T. (1994). Optimization of ultra-highperformance concrete by the use of a packing model, Cement and Concrete Research, 24(6), 997-1009. https://doi.org/10.1016/0008-8846(94)90022-1
  5. Ghagari, E., Costa, H., Julio, E. (2015). Critical review on eco-efficient ultra high performance concrete enhanced with nano-materials, Construction and Building Materials, 101, 201-208. https://doi.org/10.1016/j.conbuildmat.2015.10.066
  6. Kang, S.H., Lee, J.H., Hong, S.G., Moon, J. (2017). Microstructural investigation of heat-treated ultra-high performance concrete for optimum production, Materials, 10(9), 1106. https://doi.org/10.3390/ma10091106
  7. Kang, S.H., Hong, S.G., Moon, J. (2019a). The use of rice husk ash as reactive filler in ultra-high performance concrete, Cement and Concrete Research, 115, 389-400. https://doi.org/10.1016/j.cemconres.2018.09.004
  8. Kang, S.H., Jeong, Y., Tan, K.H., Moon, J. (2019b). High-volume use of limestone in ultra-high performance fiber-reinforced concrete for reducing cement content and autogenous shrinkage, Construction and Building Materials, 213, 292-305. https://doi.org/10.1016/j.conbuildmat.2019.04.091
  9. Kilic, A., CAtis, C.D., Yasar, E., Ozcan, F. (2003). High-strength lightweight concrete made with scoria aggregate containing mineral admixtures, Cement and Concrete Research, 33(10), 1595-1599. https://doi.org/10.1016/S0008-8846(03)00131-5
  10. Kim, J.H., Choi, S.W., Lee, K.M., Choi, Y.C. (2018). Influence of internal curing on the pore size distribution of high strength concrete, Construction and Building Materials, 192, 50-57. https://doi.org/10.1016/j.conbuildmat.2018.10.130
  11. Kim, S.S., Lee, J.B., Nam, B.R., Park, K.P. (2009). Performance evaluation of artificial lightweight aggregate mortar manufactured with waste glass, Journal of the Korea Concrete Institutute, 21(2), 147-152 [in Korean]. https://doi.org/10.4334/JKCI.2009.21.2.147
  12. Lee, N., Jeong, Y., Kang, H., Moon, J. (2020). Heat-induced acceleration of pozzolanic reaction under restrained conditions and consequent structural modification, Materials, 13(13), 2950. https://doi.org/10.3390/ma13132950
  13. Mather, B., William, G.H. (2002). Amount of water required for complete hydration of Portland cement, Concrete International, 24(6), 56-58.
  14. Park, C.B., Kim, Y.H., Jun, Y.B., Kim, J.H., Ryu, D.H. (2019). Properties comparison of concrete using lightweight aggregate with different water conditions and natural aggregate, Journal of the Korea Concrete Institute, 31(5), 459-466 [in Korean]. https://doi.org/10.4334/jkci.2019.31.5.459
  15. Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., Fang, Z. (2015). A review on ultra high performance concrete: Part I. Raw materials and mixture design, Construction and Building Materials, 101, 741-751. https://doi.org/10.1016/j.conbuildmat.2015.10.088
  16. Yang, K.H. (2013). Mix design of lightweight aggregate concrete and determination of targeted dry density of concrete, Journal of the Korea Institute of Building Construction, 13(5), 491-497 [in Korean]. https://doi.org/10.5345/JKIBC.2013.13.5.491
  17. Zhu, Y., Zhang, Y., Hussein, H.H., Chen, G. (2020). Flexural strengthening of reinforced concrete beams or slabs using ultra-high performance concrete(UHPC): A state of the art review, Engineering Structures, 205, 110035. https://doi.org/10.1016/j.engstruct.2019.110035