DOI QR코드

DOI QR Code

Estimating aquifer location using deep neural network with electrical impedance tomography

  • Received : 2020.11.24
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

Groundwater is essential source of the freshwater. Groundwater is stored in the body of the rocks or sediments, called aquifer. Finding an aquifer is a very important part of the geophysical survey. The best method to find the aquifer is to make a borehole. Single borehole is not a suitable method if the aquifer is not located in the borehole drilled area. To overcome this problem, a cross borehole method is used. Using a cross borehole method, we can estimate aquifer location more precisely. Electrical impedance tomography is use to estimate the aquifer location inside the subsurface using the cross borehole method. Electrodes are placed inside each boreholes and area between these boreholes are analysed. An aquifer is a non-uniform structure with complex shape which can represented by the truncated Fourier series. Deep neural network is evaluated as an inverse problem solver for estimating the aquifer boundary coefficients.

Keywords

References

  1. E. Custodio, "Aquifer overexploitation: what does it mean?," Hydrogeology journal vol.10, no.2, pp.254-277, 2002. DOI: 10.1007/s10040-002-0188-6
  2. A. Pidlisecky, T. Moran, B. Hansen and R. Knight, "Electrical resistivity imaging of seawater intrusion into the Monterey Bay aquifer system," Groundwater, vol.54, no.2, pp.255-261, 2016. DOI: 10.1111/gwat.12351
  3. S. L. Postel, G. C. Daily and P. R. Ehrlich, "Human appropriation of renewable fresh water," Science, vol.271, no.5250, pp.785-788, 1996. DOI: 10.1126/science.271.5250.785
  4. P. H. Gleick and N. L. Cain, The world's water 2004-2005: the biennial report on freshwater resources. Island Press, 2004.
  5. D. M. Bonotto, "Natural radionuclides in major aquifer systems of the Parana sedimentary basin, Brazil," Applied Radiation and Isotopes, vol.69, no.10, pp.1572-1584, 2011. DOI: 10.1016/j.apradiso.2011.06.002
  6. S. Okuma, T. Nakatsuka, M. Komazawa, M. Sugihara, S. Nakano, R. Furukawa, R. Supper, "Shallow subsurface structure of the Vulcano-Lipari volcanic complex, Italy, constrained by helicopter-borne aeromagnetic surveys," Exploration Geophysics, vol.37, no.1, pp.129-138, 2006. DOI: 10.1071/EG06129
  7. K. Okazaki, T. Mogi, M. Utsugi, Y. Ito, H. Kunishima, T. Yamazaki, & H. Kaieda, "Airborne electromagnetic and magnetic surveys for long tunnel construction design." Physics and Chemistry of the Earth, Parts A/B/C, vol.36, no.16, pp. 1237-1246, 2011. DOI: 10.1016/j.pce.2011.05.008
  8. M. Cheney, D. Isaacson, and J. C. Newell, "Electrical impedance tomography," SIAM review, vol.41, no.1, pp.85-101, 1999. https://doi.org/10.1137/S0036144598333613
  9. G. D'Antona, A. Ferrero, M. Lazzaroni, R. Ottoboni, and E. Samarani, "Active monitoring apparatus for underground pollutant detection based on electrical impedance tomography," Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No. 00CH37276), vol.1, pp.577-579, 2002. DOI: 10.1109/IMTC.2002.1006906
  10. R. Stacey, K. Li, R. N. Horne, "Electrical impedance tomography (eit) technique for real-time saturation monitoring," in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2006.
  11. A. K. Khambampati, B. A. Lee, K. Y. Kim, and S. Kim, "An analytical boundary element integral approach to track the boundary of a moving cavity using electrical impedance tomography," Measurement Science and Technology, vol.23, no.3, pp.035401, 2012. DOI: 10.1088/0957-0233/23/3/035401
  12. A. Adler, J. H. Arnold, R. Bayford, A. Borsic, B. Brown, P. Dixon, T. J. Faes, I. Frerichs, H. Gagnon, Y. Garber, et al., "Greit: a unified approach to 2d linear eit reconstruction of lung images," Physiological measurement, vol.30, no.6, p.S35, 2009. DOI: 10.1088/0967-3334/30/6/S03
  13. D. Holder, "Electrical impedance tomography (eit) of brain function," Brain Topography, vol.5, no.2, pp.87-93, 1992. DOI: 10.1007/BF01129035
  14. E. K. Murphy, A. Mahara, X. Wu, and R. J. Halter, "Phantom experiments using soft-prior regularization eit for breast cancer imaging," Physiological measurement, vol.38, no.6, pp.1262, 2017. DOI: 10.1088/1361-6579/aa691b.
  15. S. K. Sharma, S. K. Konki, A. K. Khambampati, and K.Y. Kim, "Bladder boundary estimation by Gravitational Search Algorithm using Electrical Impedance Tomography," IEEE Transactions on Instrumentation and Measurement, vol.69, no.12, pp.9657-9667, 2020. DOI: 10.1109/TIM.2020.3006326
  16. W. Menke, "The resolving power of cross borehole tomography," Geophysical Research Letters, vol.11, no.2, pp.105-108, 1984. DOI: 10.1029/GL011i002p00105
  17. D. Liu, Y. Zhao, A. K. Khambampati, A. Seppanen, and J. Du, "A parametric level set method for imaging multiphase conductivity using electrical impedance tomography," IEEE Transactions on Computational Imaging, vol.4, no.4, pp.552-561, 2018. DOI: 10.1109/TCI.2018.2863038
  18. M. C. Kim, K. Y. Kim, and S. Kim, "Estimation of phase boundaries in two-phase systems by an electrical impedance tomography technique," Journal of Industrial and Engineering Chemistry, vol.10, no.5, pp.710-716, 2004. DOI: 10.3811/jjmf.24.435
  19. B. Brandstatter, "Jacobian calculation for electrical impedance tomography based on the reciprocity principle," IEEE transactions on magnetics, vol.39, no.3, pp.1309-1312, 2003. DOI: 10.1109/TMAG.2003.810390
  20. S. K. Konki, A. K. Khambampati, S. K. Sharma, and K. Y. Kim, "Deep neural network for estimating the bladder boundary using electrical impedance tomography," Physiological Measurement, 2020.
  21. W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, "A survey of deep neural network architectures and their applications," Neurocomputing, vol.234, pp.11-26, 2017. https://doi.org/10.1016/j.neucom.2016.12.038
  22. D. Holder, Electrical impedance tomography: methods, history and applications. CRC Press, 2004.
  23. D. L. Colton, R.E. Ewing, and W. Rundell, eds., Inverse problems in partial differential equations (Vol. 42), Siam, 1990.
  24. K. S. Cheng, D. Isaacson, J. C. Newell, and D. G. Gisser, "Electrode models for electric current computed tomography." IEEE Transactions on Biomedical Engineering, vol.36, no.9, pp.918-924, 1989. https://doi.org/10.1109/10.35300
  25. E. Somersalo, M. Cheney, and D. Isaacson, "Existence and uniqueness for electrode models for electric current computed tomography." SIAM Journal on Applied Mathematics, vol.52, no.4, pp. 1023-1040, 1992. https://doi.org/10.1137/0152060
  26. O. C. Zienkiewicz, Finite Element Method: Vol. 3: Fluid Dynamics. Vol. 3, Elsevier Science & Technology Books, 2000.
  27. M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo, and J. P. Kaipio, "Tikhonov regularization and prior information in electrical impedance tomography." IEEE transactions on medical imaging, vol.17, no.2, pp.285-293, 1998. https://doi.org/10.1109/42.700740
  28. A. Adler and W. R. Lionheart, "Uses and abuses of eidors: an extensible software base for eit," Physiological measurement, vol.27, no.5, pp. S25, 2006. https://doi.org/10.1088/0967-3334/27/5/S03
  29. V. Kolehmainen, A. Voutilainen, and J. P. Kaipio, "Estimation of non-stationary region boundaries in eit-state estimation approach," Inverse Problems, vol.17, no.6, pp.1937, 2001. https://doi.org/10.1088/0266-5611/17/6/324
  30. A. F. Agarap, "Deep learning using rectified linear units (relu)." arXiv preprint arXiv:1803.08375, 2018.
  31. D. P. Kingma, and J. Ba, "Adam: A method for stochastic optimization." arXiv preprint arXiv: 1412.6980, 2014.
  32. R. Saad, M. N. M. Nawawi, and E. T. Mohamad, "Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT)," Electronic Journal of Geotechnical Engineering, vol.17, pp. 369-376, 2012.
  33. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, "Tensorflow: A system for large-scale machine learning," In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), pp.265-283, 2016.