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Abstract

Groundwater is essential source of the freshwater. Groundwater is stored in the body of the rocks or sediments, 

called aquifer. Finding an aquifer is a very important part of the geophysical survey. The best method to find the 

aquifer is to make a borehole. Single borehole is not a suitable method if the aquifer is not located in the borehole 

drilled area. To overcome this problem, a cross borehole method is used. Using a cross borehole method, we can 

estimate aquifer location more precisely. Electrical impedance tomography is use to estimate the aquifer location 

inside the subsurface using the cross borehole method. Electrodes are placed inside each boreholes and area 

between these boreholes are analysed. An aquifer is a non-uniform structure with complex shape which can 

represented by the truncated Fourier series. Deep neural network is evaluated as an inverse problem solver for 

estimating the aquifer boundary coefficients.
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Ⅰ. Introduction

Fresh water is the most crucial item for human

being and hydrological cycle of the earth [1][2].

Fresh water includes water in ice caps, glaciers,

ponds, lakes, river, groundwater, etc, [3]. Groundwater

is stored in the body of a rock or sediments known

as an aquifer [4][5]. This makes the exploration

of aquifer most important task in the geophysical

survey. To find the location of an aquifer

traditionally a borehole method is used. In this

method a hole is made in the ground and

samples are collected at certain levels to

determine the existence of an aquifer. This

method is time consuming, and if the aquifer is

not located in the position of the hole, the aquifer

is not identified.

Geophysics survey can be done based on the

electro-magnetic property of materials. Magnetic

resonance tomography generates images based

on the magnetic distribution properties of the

subsurface [6]. For data acquisition a huge

magnetic coil is hanged from the helicopter and

the data is collected, which is a huge task and

the implementation cost is very high [7]. On the

other hand, implementation of electrical impedance

tomography is very easy and low cost compare

to magnetic resonance tomography. Electrical

impedance tomography (EIT) generates cross-

sectional images of the conductivity distribution
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of the object [8]. EIT have been used to study

subsurface pollutant [9], petroleum reservoir

monitoring [10], process flow monitoring [11],

and also in medical applications [12-15]. The

surface electrode method is good for the case

where an aquifer is located near the surface, but

if an aquifer is deeper than this method is not

suitable. For deeper layer estimation cross borehole

method is used [16]. In the cross borehole

method, electrodes are placed inside the borehole

at equidistance in each hole. EIT generated the

cross sectional image of the subsurface located

between the two boreholes based on the measured

voltage data. This image represents the conductivity

distribution of the subsurface.

Most of the studies in EIT have estimated the

pixel conductivity, but they are affected by poor

spatial resolution [17]. Due to the poor spatial

resolution the boundaries of the aquifer is not

properly generated. The shape estimation approach

can improve the spatial resolution [18]. When

estimating the shape coefficients in the complex

domain higher order Fourier coefficients are used.

Normal optimization algorithm such as mNR

algorithm tends to have intersecting boundaries

while estimating the shape coefficients due to the

presence of Jacobian matrix [19].

Over the past few years, neural network

algorithm have been implemented for solving the

complex problems. In [20] authors have implemented

deep neural network as an inverse problem

solver for estimating the bladder boundary and

has evaluated that mNR algorithm fails to predict

high-order Fourier coefficients for complex shapes.

The neural network algorithm does not need a

Jacobian matrix and can be used as a shape

coefficient estimator. Neural network algorithm

maps the measured voltage data with the Fourier

series shape coefficients.

In this work, a deep neural network [21] algorithm

is proposed as an inverse problem solver for

estimating Fourier coefficients which defines the

shape and location of the aquifer between the

boreholes. The schematic diagram for the cross

borehole system used in this work is shown in

figure 1. From the figure we can see that the

electrodes are located on the surface of the

domain under analysis. These electrodes are

placed inside the borehole at a predefined depth.

We have implemented the 6-layer neural network

for the image reconstruction estimating the boundary

of the aquifer in EIT. The algorithm has been

trained with the simulated data which consists of

boundary voltage measurement and the corresponding

Fourier coefficients. The background different

layers are considered to be alluvium and clay. To

evaluate the algorithm, unseen data of boundary

voltage measured across the cross borehole

electrodes on the subsurface domain were used.

Numerical simulations were performed for the

evaluation of the proposed method.

Ⅱ. Electrical Impedance Tomography

Electrical impedance tomography (EIT) reconstruct

the conductivity distribution of object. To reconstruct

an image of an aquifer inside the subsurface

domain between the cross borehole as shown in

figure 1. A small magnitude of current   ⋯

is injected through electrodes   ⋯ which

is placed inside the cross borehole along the surface

 of the subsurface domain. Let conductivity

distribution of domain be  and the resultant

measured voltages be  across the electrodes.

The relationship between conductivity distribution

and the measured voltages are described by Maxwell

equation of electromagnetism as [22][23].

∇∇  ∈ (1)

In EIT, complete electrode model (CEM) is

used as it is more realistic and accurate model

[24]. Kirchhoff’s laws on the measured voltages

and injected currents are needed for the uniqueness

and the existence of the solution [25]. The

reconstruction procedure of an image in EIT

consists of the forward and inverse problem.

(983)



64 j.inst.Korean.electr.electron.eng.Vol.24,No.4,982～990,December 2020

Fig. 1. Schematic diagram of the subsurface domain. 

Electrodes (shown in red colour) are placed inside 

borehole along the boundary of the domain.

1. Forward Problem

Calculation of the measured boundary voltage

across the surface electrodes using known internal

conductivity distribution of subsurface domain

and injected currents falls in the forward problem.

In this work finite element method (FEM) [26]

have been used to address the forward problem.

The subsurface domain  is discretized into small

triangular elements as shown in figure 2. In

FEM, electrical potential  and the conductivity

distribution  within the subsurface domain are

approximated as  and  , are assumed to be

uniform within each element and is represented

as

 ≈ 
  



 (2)

 ≈ 
  



 (3)

where  ,  are the two-dimensional first-order

basis functions for electrical potential and resistivity

distribution and  is the voltage to be determined.

 and  are the number of nodes and elements

in domain mesh. The voltage  on electrodes are

approximate as

≈   
  



 (4)

Fig. 2. Domain mesh generated using a finite element 

method (FEM).

where  are voltages to be determine.  

⋯,   ⋯ ∈ ×  are the

bases for the measurement. The finite element

formulation can be expressed as a set of linear

equations

   (5)

where  is the stiffness matrix,  is current

vector and  is nodal boundary voltage vector.

For more details regarding FEM formulation,

refer to [27]. The forward solution is computed

using EIDORS [28] in MATLAB.

2. Parameterization of aquifer boundary

Let us assume a closed and disjoint known

region with a smooth boundary  in the domain

. The truncated fourier series approach can be

used to approximate the boundaries inside the

region as [29].

   

 
  

 








 





 






(6)

where   ⋯ ,  is the boundary of the

nth object,  is the number of disjoint objects in

the domain ,  is the order of the truncated

Fourier series and  is the basis function

which is periodic.

Using the above basis function in equation (6),
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the aquifer boundary  can be expressed as

 shape coefficients represented as

  

⋯



⋯

  (7)

 is estimated using a deep neural network

algorithm.

3. Inverse solver

Measured boundary voltages and the applied

currents through the cross borehole electrodes

located on the boundary of the domain are used

to estimate the conductivity distribution of the

domain. The inverse problem in EIT can be a

shape estimation problem, if the conductivity

values of the region can be known as a priori

and object boundary is inside the domain.

We have used deep neural network algorithm

as an inverse solver to estimate the aquifer

boundary. Measured boundary voltages are used

as an input for Deep neural networks (DNN)

which maps the non-linear relationship between

input voltage data and Fourier coefficient. DNN

has six layers i.e. input layer, output layers and

4 hidden layers between input and output layers

which can be seen in the schematic diagram of

the model in figure 3.

The boundary voltage data is used as input

which makes the neurons of the input layer. The

neurons of the output layer represents the Fourier

coefficients. The hidden layers is used as a

relationship mapping between input and output

layers.

A dataset containing measured boundary voltages

and the corresponding Fourier coefficients is

used. The dataset is separated as training and

testing dataset. The testing data dataset is used

to evaluate the model and the training dataset is

used to learn the relationship between measured

voltages and Fourier coefficients using a mapping

function   and expressed as

  
 



   (8)

where  is the weight. The Rectified linear unit

(ReLU) [30] have been used as an activation

function which is defined as

  max (9)

Fig. 3. Schematic diagram of deep neural network. Voltage 

data is used as input in input layer and Fourier 

coefficients is the output of output layers. Four 

hidden layers in between input and output layers.

The weights  of the nodes are estimated by

minimizing the cost function using deep neural

network. Cost function is defined as the sum of

the error between the estimated output and the

desired output value. The cost function is defined

as

  



 



 
(10)

where  is the DNN predicted output and 

is the desired output at  sample. To determine

the weight  , we minimize the least square cost

function as

  arg min
 



∥ ∥
(11)

here  is the number of training dataset for the

model. For computing the weights in the deep

neural network model with minimization of the

cost function  adam's optimization [31] is

used. Adam’s optimization update the weights 

as
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    


(12)

where,    
,  is learning rate,

 is the hyper parameter, and  is a small value.

Ⅲ. Results and discussions

The visualization of aquifer boundary estimation

in the subsurface domain using deep neural

network (DNN) is presented in this section. To

estimate the boundary of aquifer, which is located

in the background having two different conductivities,

DNN was used. The data for training the DNN

is generated using EIDORS. The dimension of

the domain taken is 30m by 30m. A finite

element subsurface domain with 10968 triangular

elements and 5781 nodes are used for generating

simulated voltage data for different aquifer sizes

during the generation of training and testing

data.

To represent the shape of the aquifer inside

the domain, truncated Fourier series is used. A

complex shaped of the aquifer boundary was

described by the total of six Fourier coefficients.

The electrical conductivities of two different

backgrounds (alluvium and clay) and aquifer are

considered as 0.004S/m, 0.321S/m, and 0.066S/m,

respectively [32]. Using the attached 16 surface

electrodes, 10 mA magnitude of current is

injected using the adjacent injection pattern.

A 6-layer deep neural network was designed

which consists of one input layer, 4 hidden

layers, and one output layer as shown in figure

3. Number of nodes in the input layer is 256, in

the output layer is 6, and in 4 hidden layers are

256, 64, 128, 64, respectively.

The number of nodes in hidden layers used are

the result of hyper-parameter tuning of the

model. Different numbers of hidden layers were

used and analysed. Different number of hidden

layers are used during development of the model.

The simplest model had 2 hidden layers and the

most complex model had 5 hidden layers. The

model which was more generalized towards the

validation dataset and had low training loss was

chosen as the appropriate model. From the table

1 we can see that the model with the 5 number

of hidden layers has the lowest training loss,

however the validation loss is higher than the 4

hidden layers model. The model with 5 hidden

layers seems to be overfitting. Model with 4

hidden layers has very less difference between

the training loss and validation loss which is

suitable for the definition of generalized model.

Thus model with 4 hidden layers is used in this

work.

Table 1. Training and validation loss of the DNN with 

different number of hidden layers.

No. of hidden layers Training loss Validation loss

2 11.279 14.465

3 7.7766 12.8065

4 3.5667 3.6737

5 2.5498 3.7690

The DNN model is trained and tested using 10

thousand pairs of simulated data (measured

boundary voltage and corresponding Fourier

coefficients). DNN algorithm was implemented in

python using TensorFlow library [33] with mean

square error (MSE) as loss function and Adam

optimizer as optimization function. Workstation

used for training and testing of DNN model has

a configuration of Intel(R) Core(TM) i7-6700

CPU @ 3.40GHz, 8GB RAM, NIVIDIA GeForce

GT730 GPU, Windows 10. The DNN model was

trained with 1500 epochs with batch size 8 per

epoch. 20% of the training dataset was separated

for the validation of the model. The learning rate

of Adam was set to 1e-3.

Training loss and validation loss per epoch is

plotted in figure 4. From the figure we can see

that the model loss is decreasing to a significant

level which allows for the prediction of the

(986)
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Fig. 5. True image of the aquifer with the background of 

known conductivity for case1. The light blue 

coloured target is the aquifer in assume 

background of alluvium and clay.

Fourier coefficients with good accuracy. The

figure shows the validation loss is higher than

the training loss because the model is being

validated with unseen data.

Fig. 4. Training loss and validation loss of the DNN model 

using the training process. Red is the training loss 

and blue is the validation loss per epoch.

The aquifer location in the subsurface domain

between the boreholes is plotted in figure 5 as

case 1. In this case, the aquifer is assumed to be

small in size. The blue coloured background is

assumed to be alluvium and yellow coloured

background is assumed to be clay. Figure 6

shows the reconstructed image of the aquifer

boundary along with the background for the case

1. As conductivities of target and backgrounds

are assumed to be known as priori. The estimated

boundary coefficients of the aquifer by DNN has

a good accuracy.

Fig. 6. Reconstructed image of the aquifer for case1 with 

the background inside the subsurface domain. 

Light blue coloured target is the estimated aquifer 

by DNN method.

Figure 7 shows the case 2 of the aquifer location.

In this case an aquifer has bigger size than the

case 1. Figure 8 shows the reconstructed image

of the aquifer boundary for the case 2 along with

the background. DNN estimated result has the

good accuracy of an aquifer boundary located

inside the domain.

Fig. 7. True image of the aquifer with the background of 

known conductivity for case2. The light blue 

coloured target is the aquifer in assume 

background of alluvium and clay.
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Fig. 8. Reconstructed image of the aquifer for case2 with 

the background inside the subsurface domain. 

Light blue coloured target is the estimated aquifer 

by DNN method. 

To evaluate the accuracy for the estimated aquifer

boundary coefficients root mean square error

(RMSE) is used. The RMSE for the estimated

aquifer boundary coefficient is defined as

  







  
(13)

where  is estimated Fourier coefficients and

 is the true Fourier coefficients. Table 2

shows the RMSE values of both cases.

Table 2. RMSE values for cases estimated by DNN.

Case RMSE

1 0.0937

2 0.1483

Ⅲ. Conclusions

The estimation of aquifer boundary inside the

subsurface domain using electrical impedance

tomography was studied. An aquifer boundary inside

the subsurface domain have been approximated by

the truncated Fourier series. Since the electrical

conductivities of the backgrounds and the aquifer

are known a priori. A six layered deep neural

network algorithm is designed to estimate the

target aquifer boundary. Deep neural network

has been trained and evaluated with the measured

boundary voltage and corresponding Fourier

coefficients of aquifer boundary. The evaluation

data was never used with the testing data. The

estimated boundary of the aquifer by the proposed

DNN had a reasonable accuracy. Also, DNN do

not require any initial guess and Jacobian matrix

computations.
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