• Title/Summary/Keyword: aquifer

Search Result 741, Processing Time 0.036 seconds

Estimating aquifer location using deep neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.982-990
    • /
    • 2020
  • Groundwater is essential source of the freshwater. Groundwater is stored in the body of the rocks or sediments, called aquifer. Finding an aquifer is a very important part of the geophysical survey. The best method to find the aquifer is to make a borehole. Single borehole is not a suitable method if the aquifer is not located in the borehole drilled area. To overcome this problem, a cross borehole method is used. Using a cross borehole method, we can estimate aquifer location more precisely. Electrical impedance tomography is use to estimate the aquifer location inside the subsurface using the cross borehole method. Electrodes are placed inside each boreholes and area between these boreholes are analysed. An aquifer is a non-uniform structure with complex shape which can represented by the truncated Fourier series. Deep neural network is evaluated as an inverse problem solver for estimating the aquifer boundary coefficients.

An Analysis of Groundwater Flow in the Multi-aquifer System (다층-대수층 시스템의 지하수 해석)

  • 김민환;전일권;정재성
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2002
  • The multi-aquifer system separated by semipervious leaky beds was analyzed. The finite difference scheme of the Crank-Nicolson method is applied to obtain the solution for this system. The solution of this scheme was compared with the analytical solution for two-layer aquifer systems with one-dimensional steady state. The results showed a good agreement between analytical and numerical solution for two-layer aquifer systems. So, the numerical scheme can be extended to multi-aquifer system. When the pumping is tried for single or multi aquifer, the computation of the groundwater heads was possible for each aquifer in the multi-aquifer with two-dimensional system. So, it might be helpful for the effective groundwater management.

Parameters Estimation and Analysis for Leaky Aquifer System (누수대수층에 대한 수리상수 추정과 해석)

  • 김민환
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.123-128
    • /
    • 1998
  • Leaky aquifer (two-aquifer) system in this study consist of an upper unconfined and a lower confined aquifer with a leaky layer between them. It is assumed that water is withdrawn from the confined aquifer of the aquifer system, the upper unconfined aquifer will be affected by the leaky aquifer separating the upper and lower aquifer. In order to analyze the leaky aquifer, the determination of hydraulic parameters is needed. In this paper, hydraulic parameters are suggested by improved SM (slope-matching) method. To know variation of groundwater head in leaky aquifer systems, an numerical scheme is made using the finite difference method. To verify the numerical scheme, its solution is compared to analytical one. The solution of them agrees well in one-dimensional system at steady-state condition. And heads of groundwader are computed upper and lower aquifer in two-dimensional system.

  • PDF

Estimation of Hydraulic Parameters of a Fractured Rock Aquifer Using Derivative Analysis (변동량 분석을 이용한 암반대수층의 수리학적 매개변수 산출)

  • Kim, Bum-Su;Yang, Dong-Chul;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.46-52
    • /
    • 2010
  • Derivative analysis, based on the derivative of the drawdown as a function of time (i.e., rate of drawdown change), was applied to the evaluation of hydraulic parameters of the aquifer as an aid of the aquifer test interpretation based on the Theis solutions. Pumping tests were conducted at a coastal fractured aquifer in Muan county, Korea, of which the drawdown data, measured at the two observation wells, were used for derivative analysis. Wellbore storage and transition period were hard to identify at conventional log-log and semi long plots, but was easily recognized by distinctive curves of positive unit slope, hump and negative unit slope in the derivative plot. For the observation well of OW-2 at which wellbore storage and transition lasted over an hour, conventional aquifer analysis would suffer from the uniqueness problems and in further result in erroneous hydraulic parameters. Derivative analysis was found to be effective for distinguishing the drawdown data directly reflecting the aquifer property from those reflecting non aquifer effects such as wellbore storage and transition, which offers a unified methodology to yield correct hydraulic parameters from aquifer test data.

Cooling Performance of Geothermal Heat Pump using Alluvium Aquifer (충적대수층을 이용한 지열히트펌프시스템의 냉방성능)

  • Kang, Byung-Chan;Park, Jun-Un;Lee, Chol-Woo;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.561-566
    • /
    • 2009
  • Alluvium is sedimentary stratum and composed of gravel, sand, silt, clay. Permeability of alluvium is the higher. If alluvium have lots of aquifer, will be of great use heat source and heat sink of heat pump. Alluvium aquifer contain the thermal energy of surrounding ground. Also geothermal heat pump using alluvium aquifer reduce expenses than general geothermal heat pump, because geothermal heat pump using alluvium aquifer make use of single well. In this study geothermal heat pump using alluvium aquifer was installed and tested for a building. The heat pump capacity is 30USRT. Temperature of ground water is in $12{\sim}17^{\circ}C$ annually and the quality of the water is as good as living water. The heat pump cooling COP is 4.4 ~ 4.7. The system cooling COP is 3.25 ~ 3.6. This performance is as good as BHE type ground source heat pump.

  • PDF

Redox Kinetics of Chromium(Ⅵ) in the Presence of Aquifer Materials Amended with Ferrous Iron

  • Hwang, Inseong;Batchelor, Bill
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.118-121
    • /
    • 2002
  • The kinetics and stoichiometry of the reduction of hexavalent chromium (Cr(Ⅵ)) with ferrous iron (Fe(II)) were examined in systems with and without aquifer solids. Cr(Ⅵ) reduction was rapid in the absence of solids, but demonstrated slower and more complex kinetics in the presence of aquifer solids. The aquifer solids removed Fe(II) from solution and a portion of the reducing capacity of Fe(II) was transferred to the aquifer solids. The solid phases were then able to continue to remove Cr(Ⅵ). This suggests in-situ treatment of Cr(Ⅵ) by Fe(II) injection would be feasible in the aquifer environment. In general, re-oxidation of reduced chromium by molecular oxygen was not observed in our systems over time periods of nearly one year.

  • PDF

Analysis of Temporal and Spatial Variations of Channel-Aquifer Interaction Using a Distributed Catchment Model: A Case Study for the Tarland Burn Catchment in the UK (분포형 유역 모델을 이용한 하천-지하수 상호작용의 시공간적 변동 해석: 영국 Tarland Burn 유역에 대한 사례 연구)

  • Koo, Bhon-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.253-257
    • /
    • 2007
  • Channel-aquifer interaction is one of the key hydrological processes that determine water flows in the stream/river channel. Field measurements of channel-aquifer interaction, however, is very difficult and costly, particularly when one intends to understand its variations across a catchment for a long period. Hydrological simulations using a catchment model are a relatively easier and cheaper alternative provided the model structure is appropriate for describing channel-aquifer interaction. In this study, a catchment model called CAMEL (Chemicals from Agricultural Management and Erosion Losses) is used for estimating channel-aquifer interaction over time and space. CAMEL is a distributed catchment model to simulate transformation and transport processes of sediment and pollutants as well as water flows at the catchment scale. In the model, a catchment is represented using a network of square columns each of which is comprised of various storages of water. CAMEL explicitly simulates both surface and subsurface processes including channel-aquifer interaction. This paper presents an application study results of CAMEL for the Tarland Burn Catchment, a small (catchment area $52\;km^2$) rural catchment in Scotland, UK, demonstrating some of the channel-aquifer interaction dynamics across the catchment during a 2-year period.

  • PDF

Design of an Aquifer Thermal Energy Storage System (I) : Isothermal Analysis (지하대수층을 이용한 축열시스템의 설계 (I) : 등온해석)

  • Song, Y.K.;Lee, K.S.;Lee, T.H.;Kim, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.102-110
    • /
    • 1993
  • An isothermal analysis was conducted to develop the design tool of an aquifer thermal energy storage system. Taejeon aquifer was chosen for the analysis, and the variation of FRE(Fluid Recovery Efficiency) with respect to the aquifer natural velocity and thermal load were investigated. The analysis results were compared with those of ATESSS(Aquifer Thermal Energy Storage System Simulator) and agreed within 2% of discrepancy. It is recommended, based on the result of this study, that the system may be suitable for a large volume of hot or chill thermal energy storage system, such as for district heating or cooling.

  • PDF

Dual-permeability Fractal Model of Groundwater Flow in Fissured Aquifers (균열대수층내 지하수유동에 관한 이중투수율 프락탈모델)

  • Bidaux, Pascal;Hamm, Se-Yeong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.433-442
    • /
    • 1997
  • A dual-permeability fractal model of fluid flow is proposed. The model simulates groundwater flow in fissured dual aquifer system composed of Aquifer 1 and Aquifer 2. For this model. groundwater flow originates only from Aquifer 1 on the pumping well. The model considers wellbore storage and skin effects at the pumping well and then shows exact drawdown at the early time of pumping. Type curves for different flow dimensions and for two cases are presented and analyzed. The case 1 represents the aquifer system which consists of Aquifer 1 with low permeability and high specific storage and Aquifer 2 with high permeability and low specific storage. The case 2 is inverse to the case 1. Dimensionless drawdown curves in Aquifer 1 and Aquifer 2 shows characteristic trend each other. Consequently, the model will be useful to analyze pumping test data of different draw down patterns on the pumping well and observation wells.

  • PDF

A Studyon the Movment of Ground Water of Banayweol Formation (반야월층(半夜月層)의 지하수운동(地下水運動)에 관(關)한 연구(硏究))

  • Kim, Yong Ki
    • Economic and Environmental Geology
    • /
    • v.9 no.4
    • /
    • pp.225-240
    • /
    • 1976
  • This study deals with the flow of bed rock ground water of Banyaweol Formation, which is presently cleared up as a laminar flow. The result obtained may be summarized as the following. 1) The Banyaweol Formation consists mainly of thin-bedded, green to blackish green shale, mudstone, and marl. The marl and mudstone alternatively occur with shale. The marl and mudstone form a aquifer of Banyaweol Formation. In this study, a group of aquifer is in convenience named as a aquifer zone. The aquifer occurs in lenticular form. The aquifer seems to be a type of artesian aquifer because it is covered with aquicludes, but it actually forms a unconfined aquifer because its piezometric surface stays under the lower aquiclude. The lowering of piezometric level is formed because of leakage of the ground water to the lower aquifer undersaturated. 2) The coefficient of permeability of Banyaweol Formation's ground water body (K) is derived by using Dupuit's equation as the following ${\log}K=\frac{CK^2-dK+f}{aK-b}\;\(M=1.365(2H-s)s\\M={\log}1.956s{\sqrt{H}}r\)$ here, $$a=\sum_{1}M_iG_i$$ $$b={\frac{1}{2}log{\sum_{i}}Q_i{^2}$$ $$c=2{\sum_{i}}M_i{^2}$$ $$d=loge{\sum_{i}}M_{i}Q_{i}+2{{\sum_{i}}N_{i}Q_{i}$$ $$f=loge{\sum_{i}}Q_i{^2}N_i$$ If the measured values substituted for the above equation, the coefficient of permeability of the aquifer is 4.1m/day. The coefficient of storge of the aquifer is $2.8{\times}10^{-4}$ if the measured values substituted for Theis's equation. Using the above constants, the filtration velocity of the aquifer is $2.1{\times}1O^{-1}m/day$and the daily flow quantity of the ground water is $847.38m^{3}/day$. 3) In order to understand the time necessary for a circulation of ground water body, the contents of tritum contained in the ground water are measured as 2.3 T.U. at the Korea Atomic Energy Research Institute. Before 1952, the average concentration of tritium per year in groundwater was reported as 10T. u., taking it as the standard, the groundwater of the present study 26.25 years old. Therofore, the groundwater of the Banyaweol Formation is judged as an relatively old groundwater. It is characteristic that the ground water of Banyawol Formation is laminar flow as well as unconfined aquifer and ground water flow of relatively long time. 4) The nature, means of flow, and circulation of Banyaweol Formation's ground water body make it possible set up this ground water body as a ground water system.

  • PDF