DOI QR코드

DOI QR Code

Repurposing Screens of FDA-Approved Drugs Identify 29 Inhibitors of SARS-CoV-2

  • Ku, Keun Bon (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Shin, Hye Jin (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Kim, Hae Soo (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Kim, Bum-Tae (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Kim, Seong-Jun (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Kim, Chonsaeng (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
  • Received : 2020.09.09
  • Accepted : 2020.11.09
  • Published : 2020.12.28

Abstract

COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread globally and caused serious social and economic problems. The WHO has declared this outbreak a pandemic. Currently, there are no approved vaccines or antiviral drugs that prevent SARS-CoV-2 infection. Drugs already approved for clinical use would be ideal candidates for rapid development as COVID-19 treatments. In this work, we screened 1,473 FDA-approved drugs to identify inhibitors of SARS-CoV-2 infection using cell-based assays. The antiviral activity of each compound was measured based on the immunofluorescent staining of infected cells using anti-dsRNA antibody. Twenty-nine drugs among those tested showed antiviral activity against SARS-CoV-2. We report this new list of inhibitors to quickly provide basic information for consideration in developing potential therapies.

Keywords

References

  1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273. https://doi.org/10.1038/s41586-020-2012-7
  2. Cucinotta D, Vanelli M. 2020. WHO Declares COVID-19 a Pandemic. Acta Biomed. 91: 157-160.
  3. Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, et al. 2020. The socio-economic Implications of the Coronavirus and COVID-19 Pandemic: a review. Int. J. Surg. 78: 185-193. https://doi.org/10.1016/j.ijsu.2020.04.018
  4. Lake MA. 2020. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med. (Lond) 20: 124-127. https://doi.org/10.7861/clinmed.2019-coron
  5. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. 2020. Clinical characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 382: 1708-1720. https://doi.org/10.1056/nejmoa2002032
  6. Weiss P, Murdoch DR. 2020. Clinical course and mortality risk of severe COVID-19. Lancet 395: 1014-1015. https://doi.org/10.1016/s0140-6736(20)30633-4
  7. Lee JY, Bae S, Myoung J. 2019. Middle east respiratory syndrome Coronavirus-encoded accessory proteins Impair MDA5-and TBK1-Mediated Activation of NF-kappaB. J. Microbiol. Biotechnol. 29: 1316-1323. https://doi.org/10.4014/jmb.1908.08004
  8. Lee JY, Kim SJ, Myoung J. 2019. Middle east respiratory syndrome Coronavirus-encoded ORF8b inhibits RIG-I-Like receptors in a differential mechanism. J. Microbiol. Biotechnol. 29: 2014-2021. https://doi.org/10.4014/jmb.1911.11024
  9. Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of middle east respiratory syndrome Coronavirus. J. Microbiol. Biotechnol. 29: 999-1007. https://doi.org/10.4014/jmb.1905.05061
  10. Ashburn TT, Thor KB. 2004. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3: 673-683. https://doi.org/10.1038/nrd1468
  11. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. 2020. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 382: 1787-1799. https://doi.org/10.1056/NEJMoa2001282
  12. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. 2020. Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 382: 2327-2336. https://doi.org/10.1056/NEJMoa2007016
  13. Kim HS, Lee K, Kim SJ, Cho S, Shin HJ, Kim C, et al. 2018. Arrayed CRISPR screen with image-based assay reliably uncovers host genes required for coxsackievirus infection. Genome Res. 28: 859-868. https://doi.org/10.1101/gr.230250.117
  14. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30: 269-271. https://doi.org/10.1038/s41422-020-0282-0
  15. Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. 2006. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80: 5059-5064. https://doi.org/10.1128/JVI.80.10.5059-5064.2006
  16. Amery WK. 1983. Flunarizine, a calcium channel blocker: a new prophylactic drug in migraine. Headache 23: 70-74. https://doi.org/10.1111/j.1526-4610.1983.hed2302070.x
  17. Ishii M, Kobayashi S, Ohkura M, Yamamoto R, Shimizu S, Kiuchi Y. 2009. Inhibitory effect of lomerizine, a prophylactic drug for migraines, on serotonin-induced contraction of the basilar artery. J. Pharmacol. Sci. 111: 221-225. https://doi.org/10.1254/jphs.09205SC
  18. Wang S, Liu Y, Guo J, Wang P, Zhang L, Xiao G, et al. 2017. Screening of FDA-Approved drugs for Inhibitors of Japanese Encephalitis Virus infection. J. Virol. 91: e01055-17.
  19. Perin PM, Haid S, Brown RJ, Doerrbecker J, Schulze K, Zeilinger C, et al. 2016. Flunarizine prevents hepatitis C virus membrane fusion in a genotype-dependent manner by targeting the potential fusion peptide within E1. Hepatology 63: 49-62. https://doi.org/10.1002/hep.28111
  20. Johansen LM, DeWald LE, Shoemaker CJ, Hoffstrom BG, Lear-Rooney CM, Stossel A, et al. 2015. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl. Med. 7: 290ra289.
  21. Nathan L, Lai AL, Millet JK, Straus MR, Freed JH, Whittaker GR, et al. 2020. Calcium ions directly interact with the Ebola virus fusion peptide to promote structure-function changes that enhance infection. ACS Infect. Dis. 6: 250-260. https://doi.org/10.1021/acsinfecdis.9b00296
  22. Wibble T, Engstrom J, Verrecchia L, Pansell T. 2020. The effects of meclizine on motion sickness revisited. Br. J. Clin. Pharmacol. 86: 1510-1518. https://doi.org/10.1111/bcp.14257
  23. Guo J, Li W, Wu Y, Jing X, Huang J, Zhang J, et al. 2017. Meclizine prevents ovariectomy-induced bone loss and inhibits osteoclastogenesis partially by upregulating PXR. Front. Pharmacol. 8: 693. https://doi.org/10.3389/fphar.2017.00693
  24. Mostafa GA, Al-Badr AA. 2011. Buclizine. Profiles Drug Subst. Excip. Relat. Methodol. 36: 1-33.
  25. D'Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P, et al. 2020. The use of antimalarial drugs against viral infection. Microorganisms. 8: 85. https://doi.org/10.3390/microorganisms8010085
  26. Han Y, Mesplede T, Xu H, Quan Y, Wainberg MA. 2018. The antimalarial drug amodiaquine possesses anti-ZIKA virus activities. J. Med. Virol. 90: 796-802. https://doi.org/10.1002/jmv.25031
  27. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. 2014. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother. 58: 4885-4893. https://doi.org/10.1128/aac.03036-14
  28. Pappas PG, Rotstein CM, Betts RF, Nucci M, Talwar D, De Waele JJ, et al. 2007. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin. Infect. Dis. 45: 883-893. https://doi.org/10.1086/520980
  29. Denning DW. 2003. Echinocandin antifungal drugs. Lancet 362: 1142-1151. https://doi.org/10.1016/S0140-6736(03)14472-8
  30. Kim C, Kang H, Kim DE, Song JH, Choi M, Kang M, et al. 2016. Antiviral activity of micafungin against enterovirus 71. Virol. J. 13: 99. https://doi.org/10.1186/s12985-016-0557-8
  31. Ho YJ, Liu FC, Yeh CT, Yang CM, Lin CC, Lin TY, et al. 2018. Micafungin is a novel anti-viral agent of chikungunya virus through multiple mechanisms. Antiviral. Res. 159: 134-142. https://doi.org/10.1016/j.antiviral.2018.10.005
  32. Ansarin K, Tolouian R, Ardalan M, Taghizadieh A, Varshochi M, Teimouri S, et al. 2020. Effect of bromhexine on clinical outcomes and mortality in COVID-19 patients: A randomized clinical trial. Bioimpacts 10: 209-215. https://doi.org/10.34172/bi.2020.27
  33. Antoszczak M, Maj E, Napiorkowska A, Stefanska J, Augustynowicz-Kopec E, Wietrzyk J, et al. 2014. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides. Molecules 19: 19435-19459. https://doi.org/10.3390/molecules191219435
  34. Ianevski A, Yao R, Fenstad MH, Biza S, Zusinaite E, Reisberg T, et al. 2020. Potential antiviral options against SARS-CoV-2 infection. Viruses 12: 642. https://doi.org/10.3390/v12060642
  35. Vogel JU, Schmidt S, Schmidt D, Rothweiler F, Koch B, Baer P, et al. 2019. The thrombopoietin receptor agonist eltrombopag inhibits human cytomegalovirus replication via iron chelation. Cells 9: 31. https://doi.org/10.3390/cells9010031

Cited by

  1. Comprehensive Consensus Analysis of SARS-CoV-2 Drug Repurposing Campaigns vol.61, pp.8, 2020, https://doi.org/10.1021/acs.jcim.1c00384
  2. Phytochemicals for the treatment of COVID-19 vol.59, pp.11, 2020, https://doi.org/10.1007/s12275-021-1467-z