DOI QR코드

DOI QR Code

Physiological activities of poly(amino acid)'s derivatives with β-sheet structure on the skin

베타시트 구조가 도입된 폴리아미노산 유도체의 피부활성에 관한 연구

  • Shin, Sung Gyu (Department of Chemical Engineering, Soongsil University) ;
  • Han, Sa Ra (Department of Chemical Engineering, Soongsil University) ;
  • Jung, Naseul (Department of Chemical Engineering, Soongsil University) ;
  • Ji, Yoonsook (Department of Bio & Nano Chemistry, Kookmin University) ;
  • Jeong, Jae Hyun (Department of Chemical Engineering, Soongsil University)
  • 신성규 (숭실대학교 화학공학과, 대학원) ;
  • 한사라 (숭실대학교 화학공학과, 대학원) ;
  • 정나슬 (숭실대학교 화학공학과, 대학원) ;
  • 지윤숙 (국민대학교 생명나노화학과) ;
  • 정재현 (숭실대학교 화학공학과, 대학원)
  • Received : 2020.12.02
  • Accepted : 2020.12.21
  • Published : 2020.12.31

Abstract

In this study, a synthesized poly(amino acid) self-assembly grafted with valine molecules was investigated on the skin activity of skin growth factors. The amphiphilic grafted poly(amino acid) derivatives were successfully synthesized by varying of degree of substitution(DS) and polymerization (DP) with valine molecules forming a β-sheet structure. Then, the pro-collagen biosynthesis of EGF(epidermal growth factor) was improved by 20%, and the inhibitory ability of tyrosinase activity was increased by 6.5 times by self-assembling of EGF with the poly(amino acid)s having β-sheet structures. This strategy of preparing protein self-assembly with poly(amino acid) derivatives will help improve the stability of protein growth factors and use it in medicals as well as cosmeceuticals through skin improvement.

본 연구에서는 발린분자가 접목된 고차구조 폴리아미노산 자기조립체를 활용하여 피부성장인자의 피부활성에 관한 연구를 진행하였다. 친수성 폴리아미노산 유도체에 베타-시트를 형성할 수 있는 발린 분자를 접목하여, 접목도(degree of substitution)와 중합도(degree of polymerization)가 조절된 양친성 폴리아미노산을 합성하였다. 고차구조 폴리아미노산과 함께 자기조립 되었을 때 상피세포성장인자는 프로콜라겐 생합성이 20% 향상되었고 티로시나아제 활성 저해능은 6.5배 증가함을 확인하였다. 고차구조 폴리아미노산 자기조립체를 활용하면 다양한 단백질 성장인자의 구조 안정성을 확보하여 효과적인 피부개선이 가능한 기능성 화장품 물질뿐만 아니라 나아가 의약품으로도 사용 가능하리라 기대된다.

Keywords

References

  1. O. Song, C. Antille, G. Kaya, J. H. Saurat, "Retinoids in cosmeceuticals", Dermatologic Therapy, Vol. 19 pp. 289-296, (2006). https://doi.org/10.1111/j.1529-8019.2006.00086.x
  2. I. C. Kim, "Study on Cosmeceutical Activities from Fermented Ginseng Berry Extracts", Journal of the Korean Applied Science and Technology, Vol. 37, No. 1 pp. 28-37, (2020).
  3. H. H. Hadmed, R. F. Castillo, "Cosmeceuticals: peptides, proteins, and growth factors", Journal of Cosmetic Dermatology, Vol. 15 pp. 514-519, (2016). https://doi.org/10.1111/jocd.12229
  4. J. K. Choi, J. H. Jang, W. H. Jang, J. Kim, I. H. Bae, J. Bae, Y. H. Park, B. J. Kim, K. M. Lim, J. W. Park, "The effect of epidermal growth factor (EGF) conjugated with low-molecular-weight protamine (LMWP) on wound healing of the skin", Biomaterials, Vol.33 pp. 8579-8590, (2012). https://doi.org/10.1016/j.biomaterials.2012.07.061
  5. Y. J. Jeon, Y. H. Kim, Y. J. Jeon, W. W. Lee, I. G. Bae, K. W. Yi, S. H. Hong, "Increased synthesis of hyaluronic acid by enhanced penetration of CTP‐EGF recombinant in human keratinocytes", Journal of Cosmetic Dermatology, Vol. 18, No.5 pp. 1539-1545, (2019). https://doi.org/10.1111/jocd.12855
  6. J. U. Shin, M. K. Kang, H. S. Yoo, "Development of Targeted Anti-Cancer Agents Employing Epidermal Growth Factor", Polymer Science and Technology, Vol. 28, No.2 pp. 139-145, (2017).
  7. N. R. Johnson, Y. Wang, "Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing", Journal of Controlled Release, Vol. 166 pp. 124-129, (2013). https://doi.org/10.1016/j.jconrel.2012.11.004
  8. P.P. Ongusaha, J.C. Kwak, A.J. Zwible, S. Macip, S. Higashiyama, N. Taniguchi, L. Fang, S.W. Lee, "HB-EGF is a potent inducer of tumor growth and angiogenesis", Cancer Research, Vol. 64 pp. 5283-5290, (2004). https://doi.org/10.1158/0008-5472.CAN-04-0925
  9. S. Dogan, S. Demirer, I. Kepenekci, B. Erkek, A. Kiziltay, N Hasirci, S. Müftüoglu, A. Nazikoglu, N. Renda, U. D. Dincer, A. Elhan, E. Kuterdem, "Epidermal growth factor-containing wound closure enhances wound healing in nondiabetic and diabetic rats", International Wound Journal, Vol. 6, No. 2 pp.107-115, (2009). https://doi.org/10.1111/j.1742-481X.2009.00584.x
  10. J. Hardwicke, D. Schmaljohann, D. Boyce, D. Thomas, "Epidermal growth factor therapy and wound healing-past, present and future perspectives", The Surgeon, Vol. 6, No. 3 pp. 172-177, (2008). https://doi.org/10.1016/S1479-666X(08)80114-X
  11. G. Secchi, "Role of protein in cosmetics", Clinics in Dermatology, Vol.26 pp. 321-325, (2008). https://doi.org/10.1016/j.clindermatol.2008.04.004
  12. I. W. Park, N. s. Jung, S. R. Han, S. J. Oh, H. J. Kim, J. H. Jeong, "β-sheet mediated self-assembly of poly (aspartamide) grafted oligo(L-valine)", Polymer(Korea), Vol. 43, No. 4 pp. 1-5, (2019).
  13. W. H. Daly, D. Poche, "The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate", Tetrahedron Letters, Vol. 29, No. 46 pp. 5859-5862, (1988). https://doi.org/10.1016/S0040-4039(00)82209-1
  14. M. S. Um, "The Evaluation on the Effectiveness of Zingiber mioga extract as a Cosmetic Material through Verification of Cosmeceutical Activations", Journal of the Korean Applied Science and Technology, Vol. 37, No. 5 pp. 1088-1099, (2020). https://doi.org/10.12925/JKOCS.2020.37.5.1088
  15. S. Y. Kim, M. H. Lee, S. N. Park, "Evaluations of antioxidative activity and whitening effect of extracts from different parts of cosmos bipinnatus", Journal of the Korean Applied Science and Technology, Vol. 27, No. 4 pp. 559-567, (2010).
  16. J. Byun, S. G. Shin, S. R. Han, S. W. Cho, J. W. Lim, J. H. Jeong, "Analysis of procollagen biosynthesis of functional peptides utilizing stiffness controlled artificial skin dermis", Journal of Society of Cosmetic Scientists of Korea, Vol. 44, No. 4 pp. 419-425, (2018). https://doi.org/10.15230/SCSK.2018.44.4.419

Cited by

  1. 스피로피란 기반 친수성 가교제를 활용한 다중 자극 감응형 하이드로젤 vol.38, pp.1, 2020, https://doi.org/10.12925/jkocs.2021.38.1.126