DOI QR코드

DOI QR Code

Fabrication of ionic liquid and polymer based solid-state electrolyte for secondary battery

이온성 액체와 고분자 기반의 이차전지용 고체 전해질의 제조

  • Kang, Hye Ju (Division of Energy and Environmental Engineering, Daejin University) ;
  • Jeong, Hyeon Taek (Division of Energy and Environmental Engineering, Daejin University)
  • 강혜주 (대진대학교 에너지환경공학부, 대학원) ;
  • 정현택 (대진대학교 에너지환경공학부)
  • Received : 2020.12.02
  • Accepted : 2020.12.21
  • Published : 2020.12.31

Abstract

The solid-state electrolyte based on polymer has great attention to develop its ionic conductivity from conventional polymer electrolyte by using wide range of ionic liquids with remarkable processability, flexibility and is applicable to various electrochemical devices including batteries, supercapacitor. Polymer electrolyte based on Ionic liquid with high conductivity, wide electrochemical stability, thermal stability is used in various electronic devices. In this work, we have investigated and developed solid-state electrolyte based on ionic liquid and polymer with enhanced ionic conductivity and electrochemical performances to conduct to various electronic devices including secondary battery. The ionic conductivity of polymer based solid state electrolyte with optimized ratio of the ionic liquid was 1.46-2 S/cm. The ionic liquid and polymer based electrolyte with enhanced ionic conductivity is promising candidates to utilize in wide range of secondary batteries.

고분자를 기반으로 하는 고체전해질은 용이한 가공성, 재료의 유연성뿐만 아니라 배터리, 슈퍼커패시터를 포함하는 이차전지 등 다양한 전기화학 소자에 응용이 가능한 소재로서, 기존 전해질의 낮은 이온전도도 및 전기화학적 안정성을 향상시키기 위하여 다양한 이온성 액체 기반의 고체 전해질에 관한 연구가 활발히 진행 중에 있다. 이온성 액체의 높은 이온전도성, 넓은 전기화학 안정성, 열적 안정성을 활용한 고분자 전해질은 다양한 전자소자에 활용되고 있다. 따라서 본 연구에서는 이온성 액체의 종류와 비율의 최적화를 통하여 고분자 기반의 고체 전해질을 제조하고 전기화학적 성능을 분석하여 이차전지를 포함한 다양한 전자 소자에 응용이 가능한 이온성 액체 기반의 전해질을 개발하고자 하였다. 이온성 액체의 비율을 최적화를 통하여 제조된 고분자 기반 고체 전해질의 이온 전도도는 1.46-2 S/cm로 확인되었다. 이온전도도가 향상된 이온성 액체와 고분자 기반의 고체 전해질은 다양한 이차전지에 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. J. E. Martyn, R. S. Lenneth, "Ionic liquids. Green solvents for future", Pure Appl. Chem., Vol 72, No. 7, pp.1391-1398, (2000) https://doi.org/10.1351/pac200072071391
  2. A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plee, M. Mastragostino, S. Passerini, "High temperature carboncarbon supercapacitor using ionic liquid as electrolyte", Journal of Power Sources, Vol 165, Issue 2, pp. 922-927, (2007). https://doi.org/10.1016/j.jpowsour.2006.12.048
  3. H.J. Lee, J.S. Lee, B.S. Ahn, H.S. Kim, "Technology trend in ionic liquids", J. Korean Ind. Eng. Chem, Vol 16, No.5, pp.595-602, (2005)
  4. X. Shen, Q. Zhang, T. Ning, T. Liu, Y. Luo, X. He, Z. Luo, A. Lu, "Critical challenges and progress of solid garnet electrolytes for all-solid-state batteries", Materials Today Chemistry, Vol 18, 100365, (2020) https://doi.org/10.1016/j.mtchem.2020.100365
  5. N. Chen, Y. Ren, P. Kong, L. Tan, H. Feng, Y. Luo, "In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors", Applied Surface Science, Vol 392, pp. 71-79, (2017). https://doi.org/10.1016/j.apsusc.2016.07.168
  6. Dong Hui Lee, Hae Min Yang, Keun Hyung Lee. "Ionic Liquid Based Polymer Electrolytes for Next Generation Electrochemical Devices" KIC News, Vol 19, No. 6, pp.15-25, (2016).
  7. Y. Zhou, X Zou, Z. Zhao, B. Xiang, Y. Zhang, "CoO/Rgo composite prepared by a facile direct-flame approach for high power supercapacitors", Ceramics International, Vol 44, pp. 16900-16907 (2018). https://doi.org/10.1016/j.ceramint.2018.06.128
  8. W. Wu, Y. Li, L. Yang, Y. Ma, D. Pan, Y. Li, "A Facile One-pot Preparation of Dialdehyde Starch Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors", Electrochemica Acta, Vol. 139, pp. 117-126, (2014) https://doi.org/10.1016/j.electacta.2014.06.166
  9. J. Chen, K. Fang, Q. Chen, J. Xu, C.-P. Wong, "Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors", Nano Energy, Vol. 53, pp. 337-334, (2018). https://doi.org/10.1016/j.nanoen.2018.08.056
  10. D. H. Lee, H. J. Kim, K. H. Lee, "Ionic Liquid Based Polymer Electrolytes for Electrochemical Transistors", Polymer Science Technology, Vol 26, No. 6, pp. 483-489, (2015).
  11. X. Liu, M. N. Marlow, S. J. Cooper, B. Song, X. Chen, N. P. Brandon, B. Wu, "Flexible all-fiber electrospun supercapacitor", Journal of Power Sources, Vol. 384, pp. 264-269, (2018). https://doi.org/10.1016/j.jpowsour.2018.02.081
  12. S. Alipoori, S. Mazinani, S. H. Aboutalebi, F. Sharif, "Review or PVA-based gel polymer electrolytes in flexible Solid-state supercapacitors: Opportunities and challenges", Journal of Energy Storage, Vol. 27, 101072, (2020). https://doi.org/10.1016/j.est.2019.101072
  13. A. Kim, "Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes", Trans. Of the Korean Hydrogen and New Energy Society, Vol 27, Issue 6, pp. 660-669 (2016) https://doi.org/10.7316/KHNES.2016.27.6.660
  14. J.-K. Koo, M.-J. Choi, C.-H. Shin, T.-U. Kang, N.-J. Cho, "A Study on the Organic/inorganic Composite Electrolyte Membranes for Dye Sensitized Solar Cell", Membrane Journal, Vol 18, Issue 4, pp. 345-353, (2008)
  15. Jizhang Chen, Kaili Fang, Qiongyu Chen, Junling Xu, Ching-Ping Wong, "Integrated paper electrodes derived from cotton stalks for high-performanceflexible supercapacitors", Nano Energy, Vol. 53, pp. 337-344 (2018). https://doi.org/10.1016/j.nanoen.2018.08.056