DOI QR코드

DOI QR Code

트위터 사용자들의 감성을 이용한 사회적 이슈 분석

Social Issue Analysis Based on Sentiment of Twitter Users

  • 김한나 (순천향대학교 미래융합기술학과) ;
  • 정영섭 (순천향대학교 빅데이터공학과)
  • Kim, Hannah (Department of Future Convergence Technology, Soonchunhyang University) ;
  • Jeong, Young-Seob (Department of Bigdata Engineering, Soonchunhyang University)
  • 투고 : 2019.07.19
  • 심사 : 2019.11.20
  • 발행 : 2019.11.28

초록

대중들의 소통의 창구로 자리매김 하고 있는 소셜 네트워크 서비스(SNS)에 작성된 글은 감성을 많이 포함하고 있다는 특징을 갖고 있다. 그 중 트위터는 공개 Application Programming Interface(API)를 통한 데이터의 수집이 편리하다는 장점을 지니고 있다. 본 논문에서는 트위터 상에 표현된 사용자들의 감성 정보를 통해 사회적 이슈를 분석하고 마케팅 분야 활용 가능성을 제시한다. 이는 국민 또는 소비자의 의견과 반응을 필요로 하는 정부, 기업 등에 도움이 될 수 있다. 본 논문에서는 최근 사회적 이슈에 대한 트위터 텍스트 데이터를 긍정 또는 부정으로 분류하여 질적 분석을 제공하였고, 각 트윗의 좋아요 수, 리트윗 수 등에 대한 상관관계 분석을 통해 양적분석을 제공하였다. 질적 분석의 결과로 국민의 지지를 얻기 위해 관세정책을 홍보하고, 버즈 사용자에게는 기술적 편의를 제공할 것을 제안하였다. 양적 분석의 결과, 트위터 사용자들의 관심을 끌기 위해서는 긍정적인 트윗을 짧고 간단하게 작성해야 함을 밝혔다. 데이터의 수집 기간이 짧고, 단 두 가지의 키워드만을 분석하여 일반화 가능성이 떨어지는 한계를 가져 향후, 보다 긴 기간의 다양한 사회적 이슈를 분석할 예정이다.

Recently, social network service (SNS) is actively used by public. Among them, Twitter has a lot of tweets including sentiment and it is convenient to collect data through open Aplication Programming Interface (API). In this paper, we analyze social issues and suggest the possibility of using them in marketing through sentimental information of users. In this paper, we collect twitter text about social issues and classify as positive or negative by sentiment classifier to provide qualitative analysis. We provide a quantitative analysis by analyzing the correlation between the number of like and retweet of each tweet. As a result of the qualitative analysis, we suggest solutions to attract the interest of the public or consumers. As a result of the quantitative analysis, we conclude that the positive tweet should be brief to attract the users' attention on the Twitter. As future work, we will continue to analyze various social issues.

키워드

참고문헌

  1. C. W. Choi. (2011). Development Process and Major Cases of SNS. Industrial Engineering Magazine, 18(1), 20-23.
  2. Wikipedia Contributors. (2019, July 11). Social networking service. Retrieved July 16, 2019, from Wikipedia website: https://en.wikipedia.org/wiki/Social_networking_service
  3. H. Jung, J. Bae, S. Hong, C. Park, & M. Song. (2016). Analysis of Twitter Public Opinion in Different Political Views. Korean Journal of Journalism and Communication Studies, 60(2), 269-302. https://doi.org/10.20879/kjjcs.2016.60.2.010
  4. J. Lee & H. Park. (2016). Comparing Customer Reactions Before and After of a Smart Watch Release through Opinion Mining. The Korean journal of bigdata, 1(1), 1-7.
  5. H. J. Ahn. (2016). The Relationship between Personality and the Behavior of Using Twitter of Korean Users. Journal of Korean Institute of Information Technology, 14(1), 171-177. https://doi.org/10.14801/jkiit.2016.14.1.171
  6. D. Hong, H. Jeong, S. Park, E. Han, H. Kim & I. Yun. (2017). Study on the Methodology for Extracting Information from SNS Using a Sentiment Analysis. Journal of The Korea Institute of Intelligent Transport Systems, 16(6), 141-155. https://doi.org/10.12815/kits.2017.16.6.141
  7. J. Y. Gang, T. Y. Kim, J. W. Choi & H. J. Oh. (2016). A Study on the Vitalization Strategy Based on Current Status Analysis of National Archives. Journal of the Korean society for information management, 33(3), 263-285. https://doi.org/10.3743/KOSIM.2016.33.3.263
  8. J. Y. Gang, T. Y. Kim, J. W. Choi & H. J. Oh. (2016). A Study on Social Media Usage of Government Archival Services and Users' Interestedness: Focused on "National Archives of Korea" and "Presidential Archives". Journal of the Korean society for information management, 33(2), 135-156. https://doi.org/10.3743/KOSIM.2016.33.2.135
  9. R. D. Lee, J. M. Kim & J. S. Lim. (2016). Analysis of Twitter Topic using LDA. The Journal of Korean Institute of Communications and Information Sciences, 1010-1011.
  10. J. Hong & S. Choi. (2016). Consumers' Responses toward New Nike Product in Twitter Messages. Journal Korea Society of Visual Design Forum, 50, 73-84.
  11. J. H. Bae, J. E. Son & M. Song. (2013). Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques. Journal of Intelligence and Information Systems, 19(3), 141-156. DOI : 10.13088/jiis.2013.19.3.141
  12. C. H. Lee, J. Hur, H. J. Oh, H. J. Kim, P. M. Ryu & H. K. Kim. (2013). Technology trends of issue detection and predictive analysis on social big data. Electronics and Telecommunications Trends, 28(1), 62-71.
  13. M. Y. Chong. (2015). Selecting a key issue through association analysis of realtime search words. Journal of Digital Convergence, 13(12), 161-169. DOI : 10.14400/jdc.2015.13.12.161
  14. Y. J. Ham, C. W. Ahn, K. H. Kim, G. B. Park, K. J. Kim, D. Y. Lee & S. M. Park. (2014). A Study on Policy Priorities for Implementing Big Data Analytics in the Social Security Sector : Adopting AHP Methodology. Journal of Digital Convergence, 12(8), 49-60. DOI : 10.14400/jdc.2014.12.8.49
  15. M. Y. Chong. (2016). Extracting week key issues and analyzing differences from realtime search keywords of portal sites. Journal of Digital Convergence, 14(12), 237-243. DOI : 10.14400/jdc.2016.14.12.237
  16. T. Y. Kim, Y. Kim & H. J. Oh. (2017). An Analysis of the Relationship between Public Opinion on Social Bigdata and Results after Implementation of Public Policies: A Case Study in "Welfare" Policy. Journal of Digital Convergence, 15(3), 17-25. DOI : 10.14400/jdc.2017.15.3.17
  17. Google Code Archive - Long-term storage for Google Code Project Hosting. (2019). word2vec. Retrieved July 16, 2019, from Google.com website: https://code.google.com/p/word2vec/
  18. H. Abdi & L. Williams. (2010). Principal Component Analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. https://doi.org/10.1002/wics.101
  19. S. Lai, L. Xiu, K. Liu & J. Zhao. (2015). Recurrent Convolutional Neural Networks for Text Classification. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 2267-2273). Austin, Texas : Association for the Advancement of Artificial Intelligence.
  20. Y. Kim. (2014). Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (pp. 1746-1751). Doha, Qatar : Association for Computational Linguistics.
  21. K. Nal, E. Grefenstette & P. Blunsom. (2014). A Convolutional Neural Network for Modelling Sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (pp. 655-665). Baltimore, Maryland, USA : Association for Computational Linguistics.
  22. T. Lei, R. Barzilay & T. Jaakkola. (2015). Molding CNNs for text: non-linear, non-consecutive convolutions. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1565-1575). Lisbon, Portugal : Association for Computational Linguistics.
  23. D. Tang, B. Qin & T. Liu. (2016). Document Modeling with Gated Recurrent Neural Network for Sentiment Classification. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1422-1432). Lisbon, Portugal : Association for Computational Linguistics.
  24. Q. Qian, M. Huang, J. Lei & X. Zhu. (2016). Linguistically Regularized LSTM for Sentiment Classification. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (pp. 1679-1689). Vancouver, Canada. : Association for Computational Linguistics.
  25. J. Chung, C. Gulcehre, K. Cho & Y. Bengio. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Retrieved from https://arxiv.org/pdf/1412.3555.pdf
  26. M. Huang, Y. Cao & C. Dong. (2016). Modeling Rich Contexts for Sentiment Classification with LSTM. Retrieved from https://arxiv.org/pdf/1605.01478.pdf
  27. Y. Zhang, Z. Zhang, D. Miao & J. Wang. (2019). Three-way enhanced convolutional neural networks for sentence-level sentiment classification. Information Sciences, 477, 55-64. DOI : 10.1016/j.ins.2018.10.030
  28. H. Kim & Y. S. Jeong. (2019). Sentiment Classification Using Convolutional Neural Networks. Applied Sciences, 9(11), 2347. DOI : 10.3390/app9112347
  29. M. K. Kwon & H. S. Yang. (2017). Performance Improvement of Object Recognition System in Broadcast Media Using Hierarchical CNN. Journal of Digital Convergence, 15(3), 201-209. DOI : 10.14400/jdc.2017.15.3.201
  30. Tweepy. (2019). Retrieved July 16, 2019, from Tweepy.org website: https://www.tweepy.org/
  31. A. F. M. Agarap. (2019). Deep Learning using Rectified Linear Units (ReLU). Retrieved from https://arxiv.org/pdf/1803.08375.pdf
  32. D. P. Kingma. & J. L. Ba. (2015). ADAM: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations (pp.1-15), San Diego, CA, USA.