참고문헌
- C. W. Choi. (2011). Development Process and Major Cases of SNS. Industrial Engineering Magazine, 18(1), 20-23.
- Wikipedia Contributors. (2019, July 11). Social networking service. Retrieved July 16, 2019, from Wikipedia website: https://en.wikipedia.org/wiki/Social_networking_service
- H. Jung, J. Bae, S. Hong, C. Park, & M. Song. (2016). Analysis of Twitter Public Opinion in Different Political Views. Korean Journal of Journalism and Communication Studies, 60(2), 269-302. https://doi.org/10.20879/kjjcs.2016.60.2.010
- J. Lee & H. Park. (2016). Comparing Customer Reactions Before and After of a Smart Watch Release through Opinion Mining. The Korean journal of bigdata, 1(1), 1-7.
- H. J. Ahn. (2016). The Relationship between Personality and the Behavior of Using Twitter of Korean Users. Journal of Korean Institute of Information Technology, 14(1), 171-177. https://doi.org/10.14801/jkiit.2016.14.1.171
- D. Hong, H. Jeong, S. Park, E. Han, H. Kim & I. Yun. (2017). Study on the Methodology for Extracting Information from SNS Using a Sentiment Analysis. Journal of The Korea Institute of Intelligent Transport Systems, 16(6), 141-155. https://doi.org/10.12815/kits.2017.16.6.141
- J. Y. Gang, T. Y. Kim, J. W. Choi & H. J. Oh. (2016). A Study on the Vitalization Strategy Based on Current Status Analysis of National Archives. Journal of the Korean society for information management, 33(3), 263-285. https://doi.org/10.3743/KOSIM.2016.33.3.263
- J. Y. Gang, T. Y. Kim, J. W. Choi & H. J. Oh. (2016). A Study on Social Media Usage of Government Archival Services and Users' Interestedness: Focused on "National Archives of Korea" and "Presidential Archives". Journal of the Korean society for information management, 33(2), 135-156. https://doi.org/10.3743/KOSIM.2016.33.2.135
- R. D. Lee, J. M. Kim & J. S. Lim. (2016). Analysis of Twitter Topic using LDA. The Journal of Korean Institute of Communications and Information Sciences, 1010-1011.
- J. Hong & S. Choi. (2016). Consumers' Responses toward New Nike Product in Twitter Messages. Journal Korea Society of Visual Design Forum, 50, 73-84.
- J. H. Bae, J. E. Son & M. Song. (2013). Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques. Journal of Intelligence and Information Systems, 19(3), 141-156. DOI : 10.13088/jiis.2013.19.3.141
- C. H. Lee, J. Hur, H. J. Oh, H. J. Kim, P. M. Ryu & H. K. Kim. (2013). Technology trends of issue detection and predictive analysis on social big data. Electronics and Telecommunications Trends, 28(1), 62-71.
- M. Y. Chong. (2015). Selecting a key issue through association analysis of realtime search words. Journal of Digital Convergence, 13(12), 161-169. DOI : 10.14400/jdc.2015.13.12.161
- Y. J. Ham, C. W. Ahn, K. H. Kim, G. B. Park, K. J. Kim, D. Y. Lee & S. M. Park. (2014). A Study on Policy Priorities for Implementing Big Data Analytics in the Social Security Sector : Adopting AHP Methodology. Journal of Digital Convergence, 12(8), 49-60. DOI : 10.14400/jdc.2014.12.8.49
- M. Y. Chong. (2016). Extracting week key issues and analyzing differences from realtime search keywords of portal sites. Journal of Digital Convergence, 14(12), 237-243. DOI : 10.14400/jdc.2016.14.12.237
- T. Y. Kim, Y. Kim & H. J. Oh. (2017). An Analysis of the Relationship between Public Opinion on Social Bigdata and Results after Implementation of Public Policies: A Case Study in "Welfare" Policy. Journal of Digital Convergence, 15(3), 17-25. DOI : 10.14400/jdc.2017.15.3.17
- Google Code Archive - Long-term storage for Google Code Project Hosting. (2019). word2vec. Retrieved July 16, 2019, from Google.com website: https://code.google.com/p/word2vec/
- H. Abdi & L. Williams. (2010). Principal Component Analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. https://doi.org/10.1002/wics.101
- S. Lai, L. Xiu, K. Liu & J. Zhao. (2015). Recurrent Convolutional Neural Networks for Text Classification. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 2267-2273). Austin, Texas : Association for the Advancement of Artificial Intelligence.
- Y. Kim. (2014). Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (pp. 1746-1751). Doha, Qatar : Association for Computational Linguistics.
- K. Nal, E. Grefenstette & P. Blunsom. (2014). A Convolutional Neural Network for Modelling Sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (pp. 655-665). Baltimore, Maryland, USA : Association for Computational Linguistics.
- T. Lei, R. Barzilay & T. Jaakkola. (2015). Molding CNNs for text: non-linear, non-consecutive convolutions. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1565-1575). Lisbon, Portugal : Association for Computational Linguistics.
- D. Tang, B. Qin & T. Liu. (2016). Document Modeling with Gated Recurrent Neural Network for Sentiment Classification. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1422-1432). Lisbon, Portugal : Association for Computational Linguistics.
- Q. Qian, M. Huang, J. Lei & X. Zhu. (2016). Linguistically Regularized LSTM for Sentiment Classification. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (pp. 1679-1689). Vancouver, Canada. : Association for Computational Linguistics.
- J. Chung, C. Gulcehre, K. Cho & Y. Bengio. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Retrieved from https://arxiv.org/pdf/1412.3555.pdf
- M. Huang, Y. Cao & C. Dong. (2016). Modeling Rich Contexts for Sentiment Classification with LSTM. Retrieved from https://arxiv.org/pdf/1605.01478.pdf
- Y. Zhang, Z. Zhang, D. Miao & J. Wang. (2019). Three-way enhanced convolutional neural networks for sentence-level sentiment classification. Information Sciences, 477, 55-64. DOI : 10.1016/j.ins.2018.10.030
- H. Kim & Y. S. Jeong. (2019). Sentiment Classification Using Convolutional Neural Networks. Applied Sciences, 9(11), 2347. DOI : 10.3390/app9112347
- M. K. Kwon & H. S. Yang. (2017). Performance Improvement of Object Recognition System in Broadcast Media Using Hierarchical CNN. Journal of Digital Convergence, 15(3), 201-209. DOI : 10.14400/jdc.2017.15.3.201
- Tweepy. (2019). Retrieved July 16, 2019, from Tweepy.org website: https://www.tweepy.org/
- A. F. M. Agarap. (2019). Deep Learning using Rectified Linear Units (ReLU). Retrieved from https://arxiv.org/pdf/1803.08375.pdf
- D. P. Kingma. & J. L. Ba. (2015). ADAM: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations (pp.1-15), San Diego, CA, USA.