DOI QR코드

DOI QR Code

검증자 집합 형성 방법에 따른 블록체인 시스템 비교 분석

Comparative Analysis of Blockchain Systems According to Validator Set Formation Method

  • Kim, Sam-Taek (School of Information Technology Convergence, Woosong University)
  • 투고 : 2019.09.11
  • 심사 : 2019.11.20
  • 발행 : 2019.11.28

초록

최근에 작업 증명(PoW) 블록체인 합의 알고리즘들이 에너지 낭비, 확장성 부족 등의 문제점들이 나타나면서 비잔틴 장애 허용(BFT) 계열 합의 알고리즘들이 주목을 받고 있다. BFT 계열 합의 알고리즘들의 큰 특징 중 하나는 검증자 집합을 형성하여 그 안에서 합의를 이루는 것이다. 본 논문에서는 BFT 계열 합의 알고리즘들 중에서도 알고랜드, 스텔라, 이오스의 검증자 집합 형성 방법들의 확장성, 목표가 설정된 공격 가능 여부, 시빌 공격 가능 여부에 대해서 비교, 분석하였다. 또한 데이터 분석을 통한 각 검증자 형성 방법들의 문제점들을 발견하였고, 해당 합의 알고리즘들은 공통적으로 소수의 권력 있는 노드들이 전체 시스템을 지배하는 중앙화 현상이 나타남을 밝혔다.

Recently, the Byzantine Fault Tolerance(BFT) family of consensus algorithms has been attracting attention as the problems of the Proof-of-work (PoW) blockchain consensus algorithms result in energy waste and lack of scalability. One of the great features of the PBFT family consensus algorithms is the formation of a set of validators and consensus within them. In this paper, we compared and analyzed the scalability, targeted attackability, and civil attackability of Algorand, Stellar, and EOS validator set formation methods among BFT family consensus algorithms. Also, we found the problems of each verifier formation method through data analysis, and the consensus algorithms showed that the centralization phenomenon that the few powerful nodes dominate the whole system in common.

키워드

참고문헌

  1. S. Nakamoto. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System. http://www.bitcoin.org/bitcoin.pdf
  2. S. W. Jeong ,Y. R. Choi & I. G. Lee. (2018). Cyber KillChain Based Security Policy Utilizing Hash for Internet of Things. Journal of Digital Convergence, 16(9), 179-185. DOI : 10.14400/JDC.2018.16.9.179
  3. E. Bunchman. (2016). Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&isAllowed=y
  4. A. Bessani, J. Sousa & E. EP Alchieri. (2014). State Machine Replication for the Masses with BFT-SMART. International Conference on Dependable Systems and Networks IEEE, 355-362.
  5. V. Marko. (2015). The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. International workshop on open problems in network security Springer Cham, 112-125.
  6. Y. Gilad, R. Hemo, S. Micali, G. Vlachos & N. Zeldovich. (2017). Algorand: Scaling Byzantine Agreements for Cryptocurrencies https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf
  7. D. Mazaieres. (2015). The Stellar Consensus Protocol: A Federated Model for Internet-level Consensus https://www.stellar.org/papers/stellar-consensus-protocol.pdf
  8. S. T. Kim. (2018). Analysis on Consensus Algorithms of Blockchain and Attacks. The Korean Journal of The Korea Convergence Society, 9(9), 83-88. DOI : 10.15207/JKCS.2018.9.9.083
  9. G. Karame. (2016). On the security and scalability of bitcoin's blockchain. Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 1861-1862.
  10. K. N. Lee, G. H. Jeon & G. H. Jeon. (2018). A Study on Improvement of Used-goods Market Platform Using Blockchain. Journal of Digital Convergence, 16(9), 133-145. DOI : 10.14400/JDC.2018.16.9.133
  11. M. Castro & B. Liskov. (1999). Practical Byzantine Fault Tolerance. Symposium on Operating Systems Design and Implementation. https://www.cs.cornell.edu/courses/cs614/2003sp/papers/CL99.pdf
  12. S. Micali, M. Rabin & S. Vadhan. (1999). Verifiable random functions. 40 th Annual Symposium on Foundations of Computer Science, 120-130.
  13. B. Johnson, A. Laszka, J. Grossklags, M. Vasek & T. Moore. (2014). Game-theoretic analysis of DDoS attacks against Bitcoin mining pools. International Conference on Financial Cryptography and Data Security, 72-86.
  14. M. Castro & B. Liskov. (2002). Practical Byzantine Fault Tolerance and proactive recovery, ACM Transactions on Computer Systems, 20(4) 398-461. https://doi.org/10.1145/571637.571640
  15. A. E Gencer, S, Basu, I. Eyal, V. Renesse & E. G. Sirer. (2018). Decentralization in bitcoin and ethereum networks. https://arxiv.org/pdf/1801.03998.pdf