• Title/Summary/Keyword: Stellar

Search Result 937, Processing Time 0.037 seconds

Defining the $M_{BH}-sigma_*$ relation using the uniformly measured stellar velocity dispersions in the near-IR

  • Kang, Wol-Rang;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • The correlation between black hole mass and stellar velocity dispersion provides an important clue on the black hole growth and galaxy evolution. In the case of AGN, however, it is extremely difficult to measure stellar velocity dispersions in the optical since AGN continuum dilutes stellar absorption features. In contrast, stellar velocity dispersions of active galaxies can be measured in the near-IR, where AGN-to-star flux ratio is much smaller. Expecting that more stellar velocity dispersion measurements will be available using future near-IR facilities, it is crucial to test whether the stellar velocity dispersions measured from the near-IR spectra are consistent with those measured from the optical spectra. For a sample of 35 nearby galaxies, for which optical stellar velocity dispersion measurements and dynamical black hole masses are available, we obtained high quality H-band spectra, using the TripleSpec at the Palomar 5-m Telescope, in order to calibrate the stellar velocity dispersions and define the $M_{BH}-sigma_*$ relation in the near-IR. Based on the spatially resolved kinematics, we correct for the rotation component and determine the luminosity-weighted stellar velocity dispersion of the spheroid component in each galaxy. In this presentation, we will show the comparison between optical and near-IR stellar velocity dispersion measurements and define the $M_{BH}-sigma_*$ relation based on uniformly measured stellar velocity dispersion in the near-IR.

  • PDF

Calibrating the stellar velocity dispersion in near-IR

  • Kang, Wol-Rang;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2011
  • The correlation between black hole mass and galaxy stellar velocity dispersion gives an important clue on the black hole growth and galaxy evolution. In the case of AGN, however, it is extremely difficult to measure stellar velocity dispersions in the optical spectra since AGN continuum dilutes stellar absorption features. In contrast, stellar velocity dispersions of active galaxies can be measured in the near-IR, where AGN-to-star flux ratio is much smaller, particularly with the laser-guide-star adaptive optics. However, it is crucial to test whether the stellar velocity dispersion measured from the near-IR spectra is consistent with that measured from the optical spectra. Using the TripleSpec at the Palomar 5-m Telescope, we obtained high quality spectra ranging from 1 to 2.4 micron for a sample of 35 nearby galaxies, for which dynamical black hole masses and optical stellar velocity dispersion measurements are available, in order to calibrate the stellar velocity dispersion in the near-IR. In this poster, we present the initial results based on 10 galaxies, with the stellar velocity dispersion measured in the H-band.

  • PDF

The Black Hole Mass - Stellar Velocity Dispersion Relation of Narrow-Line Seyfert 1 Galaxies

  • Yoon, Yo-Sep;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2012
  • Given high accretion rates close to the Eddington limit, narrow-line Seyfert 1 galaxies (NLS1) are arguably the most important AGN subclass in investigating the origin of the black hole mass-galaxy stellar velocity dispersion ($M_{BH}-{\sigma}$) relation. Currently, it is highly debated whether NLS1s are offset from the local $M_{BH}-{\sigma}$ relation. The controversy mainly comes from the fact that the [OIII] line width has been used as a proxy for stellar velocity dispersion due to the difficulty of measuring stellar velocity dispersion in NLS1s. Using the SDSS spectra of a sample of 105 NLS1, we performed multi-component fitting analysis to separate stellar absorption lines from strong AGN [FeII] complex in order to directly measure stellar velocity dispersion. We will present the result of decomposition analysis and discuss whether NLS1s follow the same $M_{BH}-{\sigma}$ relation based on the direct measurements of stellar velocity dispersion.

  • PDF

THE PROPERTIES OF THE STELLAR NUCLEI WITH THE HOST GALAXY MORPHOLOGY IN THE ACSVCS

  • Lee, Hyun-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.195-200
    • /
    • 2011
  • We have revisited the ACS Virgo Cluster Survey (ACSVCS), a Hubble Space Telescope program to obtain ACS/WFC g and z bands imaging for a sample of 100 early-type galaxies in the Virgo Cluster. In this study, we examine 51 nucleated early-type galaxies in the ACSVCS in order to look into the relationship between the photometric and structural properties of stellar nuclei and their host galaxies. We morphologically dissect galaxies into five classes. We note that (1) the stellar nuclei of dwarf early-type galaxies (dS0, dE, and dE,N) are generally fainter and bluer with g > 18.95 and (g-z) < 1.40 compared to some brighter and redder counterparts of the ellipticals (E) and lenticular galaxies (S0), (2) the g-band half-light radii of stellar nuclei of all dwarf early-type galaxies (dS0, dE, and dE,N) are smaller than 20 pc and their average is about 4 pc, and (3) the colors of red stellar nuclei with (g - z) > 1.40 in bright ellipticals and lenticular galaxies are bluer than their host galaxies colors. We also show that most of the unusually "red" stellar nuclei with (g-z) > 1.54 in the ACSVCS are the central parts of bright ellipticals and lenticular galaxies. Furthermore, we present multi photometric band color - color plots that can be used to break the age-metallicity degeneracy particularly by inclusion of the thermally pulsing-asymptotic giant branch (TP-AGB) phases of stellar evolution in the stellar population models.

The Black Hole Mass - Stellar Velocity Dispersion Relation of Narrow-Line Seyfert 1 Galaxies

  • Yoon, Yosep;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2012
  • Narrow-Line Seyfert 1 galaxies are arguably the most important AGN subclass in investigating the origin of the black hole mass-galaxy stellar velocity dispersion (MBH-${\sigma}$) relation because of their high accretion rates close to the Eddington limit. Currently, it is still under discussion whether NLS1s are off from the local MBH-${\sigma}$ relation. We select a sample of 325 NLS1 at relatively low redshift (z<0.1) from the SDSS DR7 by constraining FWHM of $H{\beta}$ in the range of 800-2,200 km/s. Among them, we measured stellar velocity dispersion of 40 objects which show strong stellar absorption lines, e.g. Mg b triplet(${\sim}5175{\AA}$), Fe($5270{\AA}$). In contrast, the other 285 objects show too weak stellar absorption lines to measure velocity dispersion. Using the sample of 40 objects with stellar velocity dispersion measurements, we investigate whether NLS1s follow the same MBH-${\sigma}$ relation as normal galaxies and broad line AGNs. We also test the reliability of the width of narrow lines as a surrogate of stellar velocity dispersion by comparing directly measured stellar velocity dispersion with ${\sigma}$ inferred from [O III], [N II], [S II] line widths, respectively. We will discuss the connection between AGN activity in NLS1s and galaxy evolution based on these results.

  • PDF

The significance of galaxy mergers in stellar mass growth as a function of galaxy and halo mass

  • Lee, Jaehyun;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.46.3-46.3
    • /
    • 2015
  • As theoretical and empirical studies have pointed out, galaxy mergers play a pivotal role in galaxy mass assembly histories. Its contribution is considered to be more significant in more massive galaxies. In order to quantitatively understand the origin of stellar components in galaxies, we investigated stellar mass assembly histories as a function of galaxy and halo mass using semi-analytic approaches. In this study, we found that the most massive galaxies (log $M/M_{\odot}$ ~ 11.75 at z = 0), which are mostly the brightest cluster galaxies, obtain roughly 70% of their stellar components via mergers. The role of mergers monotonically declines with galaxy mass: less than 20% for log $M/M_{\odot}$ = 10.75 at z = 0. The contribution of galaxy mergers to stellar mass growth decays more slowly than that of in-situ star formation. Therefore, merger accretion becomes a dominant channel for stellar mass growth of the most massive group since z~2. However, when it comes to central galaxies in haloes less massive than $10^{13}_{\odot}$, star formation is always dominant.

  • PDF

Stellar Parameters of M dwarfs determined by the long wavelength optical part spectra

  • Kang, Won-Seok;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.153.1-153.1
    • /
    • 2011
  • For the stars cooler than the Sun, it is difficult to determine the stellar parameters and chemical abundances because of the strong molecular lines in the optical region. Therefore the NIR high-resolution spectra, such as those obtained by IGRINS would be a solution to determine the stellar parameters for late-type stars, such as M dwarfs. As using the NIR high-resolution spectra, we are expecting that it would be more reliable to compare observed spectra with synthetic spectra for the stellar parameters. In order to confirm the method by using high-resolution spectra in NIR band, it should be cross-checked against the stellar parameters from optical high-resolution spectra. We have derived the stellar parameters of M dwarfs using the synthetic spectra in the long wavelength region of the optical spectra (over 8000 $\bar{A}$), which is relatively less contaminated by molecular lines as well as telluric lines.

  • PDF

THE CONTRIBUTION OF STELLAR WINDS TO COSMIC RAY PRODUCTION

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.2
    • /
    • pp.37-48
    • /
    • 2018
  • Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about ${\mathcal{L}}_w{\approx}1.1{\times}10^{41}erg\;s^{-1}$, which is about 1/4 of the power of supernova explosions, ${\mathcal{L}}_{SN}{\approx}4.8{\times}10^{41}erg\;s^{-1}$. If we assume that ~ 1 - 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

Evidence of Stellar Substructures on the Near-infrared Image of M31 System

  • Kang, Minhee;Chun, Sang-Hyun;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2014
  • Hierarchical merging scenario indicates that galaxies go through major and minor merger events during their formation and evolution. As a result of the merging, substructural features of remnants such as stellar stream are shown around a current galaxy system. To find evidence of stellar substructures on M31 system, we used the near-infrared images of JHK filters obtained from the Wide Field Camera (WFCAM) at UKIRT 3.8m. A total sky coverage is an area of about$ 4.5^{\circ}{\times}6^{\circ}$ around M31. Indeed, M31 system which consists of several satellite systems contains stellar substructures such as giant stellar stream, loops, and spurs. By analysing stellar populations on the near-infrared color-magnitude diagrams, we selected member star candidates of each stellar substructure, from which we map out spatial distribution of stars in the vicinity of M31 system. Here, we present spatial density distribution maps of stars on each substructure over the entire field of M31 system. Also, we discuss the possible origin of the substructures and the implications on the galaxy assembly process.

  • PDF

Comparison of the Damped Oscillations in between the Solar and Stellar flares

  • Cho, Kyung-Suk;Cho, Il-Hyun;Kim, Su-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2016
  • We explore the similarity and difference of the quasi-periodic pulsations (QPPs) observed during the solar and stellar X-ray flares. For this, we identified 59 solar QPPs in the X-ray observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and 52 stellar QPPs from X-ray Multi Mirror Newton observatory (XMM-Newton). The Empirical Mode Decomposition (EMD) method and least-square-fit with the damped sine function are applied to obtain the periods and damping times of the QPPs. We found that (1) the periods and damping times of the stellar QPPs are 7.80 and 13.80 min, which are comparable with those of the solar QPPs 0.55 and 0.97 min. (2) The ratio of the damping times to the periods observed in the stellar QPPs are found to be statistically identical to the solar QPPs, (3) The damping times are well describe by the power law. The power indices of the solar and stellar QPPs are $0.891{\pm}0.172$ and $0.953{\pm}0.198$, which are consistent with the previous results. Thus, we conclude that the underlying mechanism responsible for the stellar QPPs are the natural oscillations of the flaring or adjacent coronal loops as in the Sun.

  • PDF