DOI QR코드

DOI QR Code

Preparation of Pd Coated Hollow Fiber-Type La0.1Sr0.9Co0.2Fe0.8O3-δ Catalyst and Study on Removal Characteristics of Minute Oxygen

Pd 코팅 된 중공사형 La0.1Sr0.9Co0.2Fe0.8O3-δ 촉매의 제조 및 미량 산소 제거 특성 연구

  • Jeong, Byeong Jun (Department of Advanced Materials Chemistry, Dongguk University) ;
  • Lee, Hong Ju (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Kim, Min Kwang (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lee, Seung Hwan (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Jung Hoon (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 정병준 (동국대학교 신소재화학과) ;
  • 이홍주 (동국대학교 화공생물공학과) ;
  • 김민광 (동국대학교 화공생물공학과) ;
  • 이승환 (동국대학교 화공생물공학과) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Received : 2019.10.15
  • Accepted : 2019.10.22
  • Published : 2019.12.01

Abstract

An efficient Pd-coated $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF-1928) catalyst for total oxidation of methane under landfill gas at low tmeperature has been developed. Synergism was observed between Pd coating and LSCF-1928 substrate. When Pd coating on LSCF-1928, we used electroless plating method and conformed characteristic of catalyst through TPR(Temperature Programmed Reduction) analysis, XRD(X-ray Diffraction) analysis, SEM(Scanning Electron Microscope). The results demonstrated that the Pd coated LSCF-1928 catalysts showed higher performance than non-Pd LSCF-1928. Pd coated LSCF-1928 had low total oxidation temperature of methane (< $475^{\circ}C$) which is lower than total oxidation temperature of methane about non-Pd LSCF-1928 catalysts (= $475^{\circ}C$). Also, $O_2$ conversion rate was higher than non-Pd LSCF-1928 at same temperature.

본 연구에서는 저온에서 매립지 가스(LFG)하에서 메탄의 완전 산화 특성 분석을 위한 고성능 Pd 코팅 $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF-1928)촉매를 개발하였다. LSCF-1928 촉매를 분말형과 중공사형으로 성형한 후 중공사형의 표면을 무전해도금법으로 Pd를 코팅하였다. 성형된 촉매는 TPR을 통해 촉매에 흡착 된 산소종과 그 흡착 량을 분석하였고, SEM을 통해 중공사형 기공구조를 확인하였으며, XRD를 통해 촉매의 안정성을 확인하였다. 메탄 산화 실험 결과 LSCF-1928 촉매의 메탄 완전산화 온도는 $475^{\circ}C$ 이었으나, Pd코팅 된 LSCF-1928 촉매는 이보다 낮았으며, $O_2$ 전화 율 또한 일반 LSCF-1928 촉매보다 Pd 코팅 LSCF-1928 촉매가 높았음을 확인하였다.

Keywords

References

  1. Rasi, S., Lantela, J. and Rintala, J., "Upgrading Landfill Gas Using a High Pressure Water Absorption Process," Fuel., 115, 539-543(2014). https://doi.org/10.1016/j.fuel.2013.07.082
  2. Nguyen, H. H., Nasonova, A., Nah, I. W. and Kim, K.-S., "Analysis on $CO_2$ Reforming of $CH_4$ by Corona Discharge Process for Various Process Variables," J. Ind. Eng. Chem., 32, 58-62(2015). https://doi.org/10.1016/j.jiec.2015.07.018
  3. Cho, S. H., Lee, D. Y. and Lee, Y. S., "Separation of Biomass Using Carbon Molecular Sieves Treated with Hydrogen Peroxide," J. Ind. Eng. Chem., 278-282(2015).
  4. Ryckebosch, E., Drouillon, M. and Vervaeren, H., "Techniques for Transformation of Biogas to Biomethane," Biomass and Bioenergy., 35, 1633-1645(2011). https://doi.org/10.1016/j.biombioe.2011.02.033
  5. Tanaka, H., Kaino, R., Okumura, K., Kizuka, T., Nakagawa, Y. and Tomishige, K., "Comparative Study of Rh/MgO Modified with Fe, Co or Ni for the Catalytic Partial Oxidation of Methane at Short Contact Time. Part I: Characterization of Catalysts," Applied Catalysis A: General, 378, 175-186(2010). https://doi.org/10.1016/j.apcata.2010.02.017
  6. Marchetti, L. and Forni, L., "Catalytic Combustion of Methane over Perovskites," Applied Catalysis B: Env., 15, 179-187(1998). https://doi.org/10.1016/S0926-3373(97)00045-3
  7. Lin, Y. C. and Hohn, K. L., "Perovskite Catalysts-A Special Issue on Versatile Oxide Catalysts," Catalysts, 4, 305-306(2014). https://doi.org/10.3390/catal4030305
  8. Kuhn, J. N. and Ozkan, U. S., "Effect of Co Content Upon the Bulk Structure of Sr- and Co-doped $LaFeO_3$," Catalysis Letters, 121, 179-188(2008). https://doi.org/10.1007/s10562-007-9364-6
  9. Pena, M. A. and Fierro, J. L. G., "Chemical Structures and Performance of Perovskite Oxides," Chem. Rev., 101, 1981-2018(2001). https://doi.org/10.1021/cr980129f
  10. Guntuka, S., Banerjee, S., Farooq, S. and Srinivasan, M. P., "A- and B-Site Substituted Lanthanum Cobaltite Perovskite as High Temperature Oxygen Sorbent. 1. Thermogravimetric Analysis of Equilibrium and Kinetics," Ind. Eng. Chem, 47, 154-162(2008). https://doi.org/10.1021/ie070859q
  11. Yin, Q. and Lin, Y. S., "Beneficial Effect of Order-disorder Phase Transition on Oxygen Sorption Properties of Perovskite-type Oxides," Solid State Ionics, 178, 83-89(2007). https://doi.org/10.1016/j.ssi.2006.11.013
  12. Kim, J. R., Kim, E. J., Magnone, E. and Park, J. H., "Catalytic Deoxygen Reaction of Landfill Gas (LFG) at Intermediate Temperature: The Case Study of Perovskite-type $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ Catalysts (LSCF)," Ind. Eng. Chem., 47, 214-220(2017). https://doi.org/10.1016/j.jiec.2016.11.034
  13. Lee, S. W., Kim, E. J., Lee, H. J. and Park, J. H., "Preparation of the Hollow Fiber Type Perovskite Catalyst for Methane Complete Oxidation," Ind. Eng. Chem., 56, 297-302(2018).
  14. Song, J., Meng, B., Tan, X. and Liu, H., "Surface-modified Proton Conducting Perovskite Hollow Fibre Membranes by Pd-coating for Enhanced Hydrogen Permeation," Int J Hydrogen Energy, 40, 6118-6127(2015). https://doi.org/10.1016/j.ijhydene.2015.03.057
  15. Christelle, Y., JaKa, S., Chun, X. C. L., Simon, S., Shaomin, L., Joao, C. and Diniz, da C., "Palladium Surface Modified $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ Hollow Fibres for Oxygen Separation," J. Membr. Sci., 380, 223-231(2011). https://doi.org/10.1016/j.memsci.2011.07.008
  16. Pomerantz, N. and Ma, Y. H., "Effect of $H_2S$ on the Performance and Long-Term Stability of Pd/Cu Membranes," Ind. Eng. Chem, 48, 4030-4039(2009). https://doi.org/10.1021/ie801947a
  17. Hou, Z., Theyssen, N. and Leitner, W., "Palladium Nanoparticles Stabilised on PEG-modified Silica as Catalysts for the Aerobic Alcohol Oxidation in Supercritical Carbon Dioxide," Green Chem., 9, 127-132(2007). https://doi.org/10.1039/B606740A