DOI QR코드

DOI QR Code

Growth of One-Year-Old Pot-Cultivated 'Fuji'/M.9 Apple Trees under Different Concentrations of Nitrogen Fertilization

질소시비농도에 따른 1년생 사과 'Fuji'/M.9 포트묘목의 수체 생장

  • Ha, Woongyong (Division of Extension Planning, Chungcheongbuk-do Agricultural Research & Extension Services) ;
  • Shin, Hyunsuk (Department of Horticulture, Gyeongnam National University of Science and Technology) ;
  • Lim, Heon-Kyu (Department of Horticulture, Chungbuk National University) ;
  • Oh, Youngjae (Department of Horticulture, Chungbuk National University) ;
  • Han, Hyeondae (Department of Horticulture, Chungbuk National University) ;
  • Kim, Keumsun (Department of Horticulture, Chungbuk National University) ;
  • Oh, Sewon (Department of Horticulture, Chungbuk National University) ;
  • Kwon, Yeuseok (Grape Research Institute, Chungcheongbuk-do Agricultural Research & Extension Services) ;
  • Kim, Daeil (Department of Horticulture, Chungbuk National University)
  • Received : 2019.08.05
  • Accepted : 2019.10.03
  • Published : 2019.10.31

Abstract

The study was carried out to investigate growth of 48.6-L pot-cultivated 1-year-old 'Fuji'/M.9 apple trees depending on different levels of nitrogen concentration. While rise in tree growth was paralleled with increase of nitrogen concentration, more than 32 mM of nitrogen rather restrained tree growth. In particular, growth of 16 mM of nitrogen treated trees was satisfied with criteria for production of high-quality pot-cultivated nursery stocks. Although mineral contents of leaves were higher in 8 and 16 mM nitrogen treatments than commonly recommended mineral contents in apple orchards, such somewhat surplus minerals could be helpful for tree growth after transplanting to apple orchards. In addition, our result indicated that soils of 8 and 16 mM of nitrogen treated pots met appropriate criteria for soil chemical property of apple orchards. Thus, in the light of tree growth, mineral contents of leaves, and soil chemical property in the pots, 16 mM of nitrogen treatment is considered to be suitable for production of 1-year-old 'Fuji'/M.9 apple potted trees.

사과 '후지'/M.9 포트묘목 개발을 위해 질소시비농도에 따른 생장특성을 조사하고, 포트 우량묘목 생산에 적합한 질소시비농도와 잎의 무기영양성분 함량 및 토양 화학성의 안정성을 확인하였다. 질소시비농도가 높아질수록 묘목의 생장은 증가되었고, 특히16 mM 처리가 수체 생장에 가장 좋았으며, 우량묘목 판단기준에 부합하였다. 32 mM 이상의 고농도는 오히려 생장을 감소시켰다. 잎의 무기영양성분 함량은 8, 16 mM 처리구에서 기존 사과과원의 적정수준보다 높았고, 이러한 무기영양성분은 정식 후 수체 생장에 도움이 될 것으로 생각되었다. 토양 화학성 또한 8, 16 mM 처리구에서 안정적이었다. 따라서 수체생육, 잎의 무기영양성분, 포트 내 토양화학성을 고려한 결과, 사과 '후지'/M.9 우량 포트묘목 생산을 위한 적정 질소시비량은 16 mM로 판단되었다.

Keywords

References

  1. Atkinson, C.J., M. Policarpo, A.D. Webster and A.M. Kuden. 1999. Drought tolerance of apple rootstocks: Production and partitioning of dry matter. Plant Soil 206:223-235. https://doi.org/10.1023/A:1004415817237
  2. Barlow, H.W.B. and C.R. Hancock. 1962. The influence of the leaf upon the development of its axillary meristem. Annu. Rep. East Mailing Res. Sta. 71-76.
  3. Belton, P.R. and K.M. Goh. 1992. Effects of urea fertigation of apple trees on soil pH, exchangeable cations and extractable manganese in a sandy loam soil in New Zealand. Fertil. Res. 33:239-247. https://doi.org/10.1007/BF01050879
  4. Benizri, E., S. Piutti, S. Verger, L. Pages, G. Vercambre, J.L. Poessel and P. Michelot. 2005. Replant diseases: Bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic finger printing. Soil Biol. Biochem. 37:1738-1746. https://doi.org/10.1016/j.soilbio.2005.02.009
  5. Blazich, F.A. 1988. Mineral nutrition and adventitious rooting: In Davis, T.D., B.E. Haissing and N. Sankhla (eds.), Adventitious Root Formation in Cutting. Advances in Plant Sciences, Dioscorides Press, Portland, OR (USA). pp. 61-69.
  6. Coruzzi, G. and R. Last. 2000. Amino acids: In Buchanan, B.B., W. Gruissem and L. Jones (eds.), Biochemistry and Molecular Biology of Plants, Amer. Soc. Plant Physiol., Rockville, MD (USA). pp. 358-410.
  7. Crawford, N.M., M.L. Kahn, T. Leustek and S.R. Long. 2000. Nitrogen and sulfur: In Buchanan, B., W. Gruissem and R. Jones (eds.), Biochemistry and Molecular Biology of Plants. Amer. Soc. Plant Physiol., Rockville, MD (USA). pp. 786-847.
  8. Flemer, W. 1980. Nursery production of trees in containers. METRIA Proc. 3:15-23.
  9. Gao, Y.P., H. Motosugi and A. Sugiura. 1992. Rootstock effects on growth and flowering in young apple trees grown with ammonium and nitrate nitrogen. J. American Soc. Hortic. Sci. 117:446-452. https://doi.org/10.21273/JASHS.117.3.446
  10. Gojon, A., C. Bussi, C. Grignon and L. Salsac. 1991. Distribution of $NO_3{^-}$ reduction between roots and shoots of peach tree seedlings as affected by $NO_3{^-}$ uptake rate. Physiol. Plant. 82:505-512. https://doi.org/10.1111/j.1399-3054.1991.tb02939.x
  11. Hague, E.J. and D. Neilsen. 1991. Rapid production methods for Ottawa-3 rootstock and branched apple nursery stock. Hortscience 26:1416-1419. https://doi.org/10.21273/HORTSCI.26.11.1416
  12. Hartmann, H.T., D.E. Kester and F.T. Davies. 1990. Plant Propagation: Principles and Practices. 5th ed., Prentice Hall, Englewood Cliffs, NJ (USA). p. 151
  13. Idris, M., K.F. Salifu and V.R. Timmer. 2004. Root plug effects on early growth and nutrition of black spruce seedlings. For. Ecol. Manage. 195:399-408. https://doi.org/10.1016/j.foreco.2004.03.005
  14. Jackson, J.E. 1973. Effects of soil fumigation on the growth of apple and cherry rootstocks on land previously cropped with apples. Ann. Appl. Biol. 74:99-104. https://doi.org/10.1111/j.1744-7348.1973.tb07727.x
  15. Jung, Y.J., I.S. Nou, Y.K. Kim and K.K. Kang. 2015. Effect of green manure crops incorporation for reduction of Pythium zingiberum in ginger continuous cultivation. Korean J. Plant Res. 28(2):271-278. https://doi.org/10.7732/kjpr.2015.28.2.271
  16. Kim, M.R. and T.M. Yoon. 1998. Techniques for the production of superior nursery apple trees. Andong National University Press, Andong, Korea.
  17. Kim, S.N., D.G. Choi and I.G. Gang. 2006. Effects of nitrogen supply levels on growth and nitrogen substance in pear (Pyrus pyrifolia cv. Niitaka) seedlings. J. Bio-Environ. Cont. 14(1):114-124.
  18. Kviklys, D., J. Lanauskas, J. Sakalauskaite, N. Kvikliene and N. Uselis. 2008. Soil exhaustion and rootstock effect on the growth of apple planting material. Agron. Res. 6:511-516.
  19. Lee, H.C., J.K. Kim and I.K. Yun. 2002. Establishment of seasonal patterns and range for normality of nutrients in Fuji/M.9 apple leaves for nutritional diagnosis. Res. Rept. Korea NHRI. 199-208.
  20. Mazzola, M. and L.M. Manici. 2012. Apple replant disease: role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 50:45-65. https://doi.org/10.1146/annurev-phyto-081211-173005
  21. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2016. Seed industry act. Sejong, Korea.
  22. Moe, R. and A.S. Andersen. 1988. Stock plant environment and subsequent adventitious rooting: In Haissig, B.E. and N. Sankhla (eds.), Adventitious Root Formation in Cuttings, Dioscorides Press, Portland, OR (USA). pp. 214-234.
  23. Nemeth, G. 1986. Induction of rooting: In Bajaj, Y.P.S. (eds.), Biotechnology in Agriculture and Forestry, Vol. 1: Trees, Springer-Verlag, Berlin, Germany. pp. 49-64.
  24. Neilsen, G.H., J. Beulah, E.J. Hague and R. Utkhede. 1994. Planting-hole amendments modify growth and fruiting of apples on replant sites. Hortscience 29(2):82-84. https://doi.org/10.21273/HORTSCI.29.2.82
  25. Osterreicher, J., P. Tappeiner, B. Torggler, J. Tscholl and H. Weis. 1996. Young apple orchard. Beratungsring fur Obstund Weinbau, Italy.
  26. Pacholak, E., Z. Zydlik and M. Zachwieja. 2004. The effect of different methods of preventing replanting disease and different levels of irrigation on soil and leaf mineral content. J. Fruit Ornam. Plant Res. 12:69-81.
  27. Park, J.M., D.S. Kim, H.M. Ro, M.S. Yiem and S.H. Yoo. 1999. Effect of nitrogen rates and drip-irrigation levels on leaf mineral contents and growth of lysimeter-grown 'Fuji'/M.26 apples. Hortic. Sci. Technol. 40(6):711-714 (in Korean).
  28. Peng, Y., P. Shiqi, T. Youguo, S. Ivanova and H. Magen. 2008. Fertigation management in young apple trees in Shandong, China.
  29. Poffley, M. 2004. Raising Vegetable Seedlings in Containers. Agnote, Darwin, Australia. p. 384.
  30. Preston, A.P. 1968. Pruning and rootstock as factors in the production of primary branches on apple trees. J. Hortic. Sci. 43(1):17-22. https://doi.org/10.1080/00221589.1968.11514228
  31. Quinlan, J.D. 1976. Chemical induction of lateral branches (feathers). Acta Hortic. 65:129-138. https://doi.org/10.17660/actahortic.1978.65.20
  32. Rowell, D.L. 1994. Soil Science Methods and Applications. Longman Scientific and Technical, London, England. pp. 153-159.
  33. Rumberger, A., I.A. Merwin and J.E. Thies. 2007. Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biol. Biochem. 39(7):1645-1654. https://doi.org/10.1016/j.soilbio.2007.01.023
  34. Rural Development Administration (RDA). 2012. Enemy territory selection technology of fruit tree. Suwon, Korea.
  35. Rural Development Administration (RDA). 2013. Cultivation of apple. Suwon, Korea.
  36. Sachs, T. and K.V. Thimann. 1967. The role of auxins and cytokinins in the release of buds from dominance. American J. Bot. 54(1):136-144. https://doi.org/10.1002/j.1537-2197.1967.tb06901.x
  37. Salifu, K.F. and D.F. Jacobs. 2006. Response of grafted Juglans nigra to increasing nutrient availability: growth, nutrition, and nutrient retention in root plugs. ISO: Hortscience 41(6):1477-1480. https://doi.org/10.21273/HORTSCI.41.6.1477
  38. Sonneveld, C. and W. Voogt. 2009. Plant Nutrition of Greenhouse Crops. Springer. New York, NY (USA). pp. 405-419.
  39. Sriskandarajah, S., R.M. Skirvin and H. Abu-Qaoud. 1990. The effect of some macronutrients on adventitious root development on scion apple cultivars in vitro. Plant Cell Tissue Organ Cult. 21(2):185-189. https://doi.org/10.1007/BF00033440
  40. Statistical Korea (KOSTAT). 2016. Statistics annual report. Daejeon, Korea.
  41. Stiles, W.C. and W.S. Reid. 1914. Orchard Nutrition Management. Cornell Cooperative Extension, Ithaca, NY (USA). p. 219.
  42. Utkhede, R.S., P.L. Sholberg and M.J. Smirle. 2001. Effects of chemical and biological treatments on growth and yield of apple trees planted in Phytophthora cactorum infected soil. Canadian J. Plant Pathol. 23(2):163-167. https://doi.org/10.1080/07060660109506925
  43. Van Oosten, H.J. 1978. Effect of initial tree quality on yield. Acta Hortic. 65:123-128. https://doi.org/10.17660/actahortic.1978.65.19
  44. Wertheim, S.J. 1978. Manual and chemical induction of side-shoot formation in apple trees in the nursery. Sci. Hortic. 9(4):337-345. https://doi.org/10.1016/0304-4238(78)90043-2
  45. Wertheim, S.J. 1998. Rootstock guide: apple, pear, cherry, European plum. Proefstation voor de Fruitteelt (Fruit Research Station), Wilhelminadorp, Netherlands. p. 144.
  46. Wilson, S., P. Andrews and T.S. Nair. 2004. Non-fumigant management of apple replant disease. Sci. Hortic. 102(2):221-231. https://doi.org/10.1016/j.scienta.2004.01.001
  47. Yoon, T.M., K.R. Kim, S.W. Choi, J.Y. Lee, J.G. Shin, Y.J. Woo and S.G. Han. 2000. Induction of feathering in 'Fuji'/M.9 T337 nursery apple trees with 6-bezylamino purine. Hortic. Environ. Biotechnol. 41(5):507-511.