DOI QR코드

DOI QR Code

Single Crossing Condition of Miscanthus sacchariflorus and Miscanthus sinensis to Breed Miscanthus x giganteus Cultivar

이질3배체 억새(Miscanthus x giganteus) 품종육성을 위한 물억새(M. sacchariflorus)와 참억새(M. sinensis) 단교배 조건구명

  • Moon, Youn-Ho (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Kim, Kwang-Soo (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Lee, Ji-Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Kwon, Da-Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Kang, Yong-Ku (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Cha, Young-Lok (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
  • 문윤호 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 김광수 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 이지은 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 권다은 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 강용구 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물연구소)
  • Received : 2019.08.08
  • Accepted : 2019.10.07
  • Published : 2019.10.31

Abstract

This study was conducted to investigate single crossing condition of M. sacchariflrous and M. sinensis for breeding of M. ${\times}$ giganteus cultivar. Compared with natural day length condition, cultivation in short day length condition shorten days to heading to 18~27 days in both species. Pollen germination ratio of were 75.8% at 6 o'clock in M. sacchariflorus and 51.9% at 7 o'clock in M. sinensis but decreased to below 10% at 8 o'clock in both species. When cut ears immerged in 150 mL of cut-flowers conservation solution and isolated with covering of white non-woven fabric, flowering and pollen dispersal were persisted for 7 days, and the ratio of pollen germination were above 40% for 4 days. The ratio of self-fertilization of both species were below 2.5%, but open pollenation ratio were above 50%. We obtained 437 seeds with experimental single cross of 14 combinations between tetraploid M. sacchariflorus and diploid M. siensis by application of developed single crossing methods. In the single cross, numbers of seed set were different by mother plants. Thus, the newly investigated single crossing condition will be used to breed M. ${\times}$ giganteous cultivar which is sterile and has superior characteristics of biomass yield.

본 연구는 바이오에너지용 이질 3배체 억새(Miscanthus ${\times}$ giganteus) 품종육성 위한 교배재료인 물억새(M. sacchariflorus)와 참억새(M. sinensis) 출수기 단축과 단교배 조건을 구명하기 위해 수행하였다. 물억새와 참억새를 12시간 일장, 자연일장 조건에서 재배하여 출수기 단축에 미치는 단일효과를 조사하였다. 출수기에 일중 화분 발아시간, 절단한 화분친 이삭 활력 유지 및 격리방법 등 단교배 조건을 구명하여 이를 활용한 억새의 자가수정 여부를 조사하고 시험교배를 실시하였다. 참억새와 물억새 모두 12시간 일장의 단일조건에서 재배한 것이 자연일장에 재배한 것에 비해 출수 소요일수가 단축되었다. 화분 발아시간은 물억새는 오전 6시에 왕성하였으나 시간이 경과할수록 발아율이 낮아져 오전 8시에는 10% 이하만 발아하였다. 참억새 화분은 오전 7시에 50% 이상이 발아하였고 그 이후로 낮아졌다. 화분친인 참억새 이삭을 절단하여, 절화 보존액에 꽂아 백색 부직포로 격리하였을 때 절화 보존액량이 많을수록 활력 유지 일수가 증가하여 150 mL에서 물억새, 참억새 모두 7일간 개화 및 화분 비산을 지속하였다. 이 때 화분 발아율은 참억새와 물억새 모두 4일까지 40%를 유지하였다. 참억새와 물억새는 자가수정율이 2.5% 이하로 낮고, 자연교잡 임실율은 출수기가 빠른 유전자원에서 54.4%까지 높았다. 억새 종간교배 방법 효과 확인을 위해 물억새 4배체와 참억새 2배체 간 14조합 시험교배 결과 총 437립의 교배종자를 얻었다. 본 연구로 도출된 억새 종간 단교배 방법은 우수한 종자친과 화분친으로 교배종자를 얻을 수 있어 향후 바이오매스 수량이 많으면서, 종자가 맺히지 않은 이질 3배체 품종육성에 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. An, G.H., K.R. Um, J.H. Lee, Y.H. Jang, J.E. Lee, G.D. Yu, Y.L. Cha, Y.H. Moon and J.W. Ahn. 2015. Flowering patterns of miscanthus germplasms in Korea. Korean J. Crop Sci. 60(4):510-517 (in Korean). https://doi.org/10.7740/kjcs.2015.60.4.510
  2. Arnoult, S. and M. Brancourt-Hulmel. 2015. A review on miscanthus biomass production and composition for bioenergy use: Genotypic and environmental variability and implications for breeding. BioEnergy Research. 8(2):502-526. https://doi.org/10.1007/s12155-014-9524-7
  3. Barney, J.N. and J.M. DiTomaso. 2008. Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58(1):64-70. https://doi.org/10.1641/B580111
  4. Beccari, G., L. Covarelli, V. Balmas and L. Tosi. 2010. First report of Miscanthus ${\times}$ giganteus rhizome rot caused by Fusarium avenaceum, Fusarium oxysporum and Mucor hiemalis. Australasian Plant Disease Notes 5(1):28-29. https://doi.org/10.1071/DN10011
  5. Bonin, C.L., E.A. Heaton and J. Barb. 2014. Miscanthus sacchariflorus - biofuel parent or new weed? GCB Bioenergy 6(6):629-636. https://doi.org/10.1111/gcbb.12098
  6. Cheon, B.D., I.S. Choi and J.S. Kang. 2006. Effect of sucrose, calcium and boron added in the medium on pollen germination of peach (Prunus persica S IEB). J. Life Sci. 16(4):561-565 (in Korean). https://doi.org/10.5352/JLS.2006.16.4.561
  7. Clifton-Brown, J., Y.C. Chiang and T.R. Hodkinson. 2008. Miscanthus: Genetic resources and breeding potential to enhance bioenergy production. In Aspects of applied biology, biomass and energy crops III, Booth E, M Green, A Karp, I. Shield, D Stock and D Turley. Association of applied biologists, Warwick, UK. pp. 273-294.
  8. Deuter, M. 2009. Miscanthus named 'MBS 7001'. U.S. Plant Patent 22,033 P2.
  9. Deuter, M., J. Abraham, H. Kopetz, T. Weber, W. Palz, P. Chartier and G.L. Ferrero. 1998. Genetic resources of Miscanthus and their use in breeding. In Biomass for Energy and Industry. Proceedings of the 10th European Conference and Technology Exhibition, Wurzburg, Germany. pp. 775-777.
  10. Esen, A. and R.K. Soost. 1971. Unexpected triploids in citrus: their origin, identification and possible use. J. Hered. 62(6):329-333. https://doi.org/10.1093/oxfordjournals.jhered.a108186
  11. Greef, J.M., M. Deuter, C. Jung and J. Schondelmaier. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Evol. 44(2):185-195. https://doi.org/10.1023/A:1008693214629
  12. Hwang, S.A., P.O. Lee and J.S. Lee. 2009. Effect of holding solutions on vase life and sugar content during flower senescence of cut Lilium oriental hybrid 'Casa Blanca'. Korean J. Hort. Sci. Technol. 27(2):263-268 (in Korean).
  13. Johnston, S.A., T.P.M. den Nijs, S.J. Peloquin and R.E. Hanneman Jr.. 1980. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57(1):5-9. https://doi.org/10.1007/BF00276002
  14. Kim, K.S., Y.H. Lee, Y.S. Jang and I.H. Choi. 2015. The cross ability and the phenotypic characteristics of F1 hybrid in the interspecific crosses between Brassica napus and B. campestris, B. rapa. Korean J. Plant Res. 28(1):119-125 (in Korean). https://doi.org/10.7732/kjpr.2015.28.1.119
  15. Kim, K.S., W. Park, Y.H. Lee, J.E. Lee, Y.H. Moon, Y.L. Cha and Y.S. Song. 2018. Development of flower color changed landscape plant through interspecific and intergeneric crosses of several Cruciferae crops. Korean J. Plant Res. 31(1):77-85 (in Korean). https://doi.org/10.7732/KJPR.2018.31.1.077
  16. Lee, Y.N.. 2002. Miscanthus Anderess. Flora of Korea. Seoul: Kyo-Hak Publishing Co., Seoul, Korea. pp. 1032-1034 (in Korean).
  17. Lewandowski, I, J.C. Clifton-Brown, J.M.O. Scurlock and W. Huisman. 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy 19(4):209-227. https://doi.org/10.1016/S0961-9534(00)00032-5
  18. Moon, Y.H., B.C. Koo, Y.H. Choi, S.H. Ahn, S.T. Bark, Y.L. Cha, G.H. An and J.K. Kim. 2010. Development of "Miscanthus" the promising bioenergy crop. Korean J. Weed Sci. 30(4):330-399 (in Korean). https://doi.org/10.5660/KJWS.2010.30.4.330
  19. Moon, Y.H., Y.L. Cha, Y.H. Choi, Y,M. Yoon, B.C. Koo, J.W. Ahn, G.H. An, J.K. Kim and K.G. Park. 2013. Diversity in ploidy levels and nuclear DNA amounts in Korean Miscanthus species. Euphytica 193(3):317-326. https://doi.org/10.1007/s10681-013-0910-6
  20. Moon, Y.H., J.E. Lee, G.D. Yu, Y.S. Song, Y.H. Lee, K.S. Kim, K.B. Lee and Y.L. Cha. 2018. Ploidy level and reproductive organ abnormality in interspecific hybrids between tetraploid Miscanthus sacchariflorus and diploid M. sinensis bred from a single cross. Ind. Crops and Prod. 116:182-190. https://doi.org/10.1016/j.indcrop.2018.01.022
  21. Nishiwaki, A., A. Mizuguti, S. Kuwabara, Y. Toma, G. Ishigaki, T. Miyashita, T. Yamada and H. Matuura. 2011. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of M. sacchariflorus and M. sinensis in southern Japan. Am. J. Bot. 98(1):154-159. https://doi.org/10.3732/ajb.1000258
  22. Quinn, L.D., D.H. Allen and J.R. Stewart. 2010. Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. GCB Bioenergy 2(6):310-320. https://doi.org/10.1111/j.1757-1707.2010.01062.x
  23. Uwatoko, N., K.I. Tamura, H. Yamashita and M. Gau. 2016. Naturally occurring triploid hybrids between Miscanthus sacchariflorus and M. sinensis in Southern Japan, show phenotypic variation in agronomic and morphological traits. Euphytica 212(3):355-370. https://doi.org/10.1007/s10681-016-1760-9
  24. Yun, S.H. and J.T. Lee. 2000. Climate change impacts on optimum ripening periods of rice plant and its countermeasure in rice cultivation. In Proceedings of the Korean Society of Crop Science Conference. The Korean Society of Crop Science. pp. 28-45.

Cited by

  1. 홍띠 기내 재생과 재생 녹색식물체의 유전적 안정성 vol.34, pp.2, 2021, https://doi.org/10.7732/kjpr.2021.34.2.156