DOI QR코드

DOI QR Code

Classical testing based on B-splines in functional linear models

함수형 선형모형에서의 B-스플라인에 기초한 검정

  • Received : 2019.05.18
  • Accepted : 2019.06.12
  • Published : 2019.08.31

Abstract

A new and interesting task in statistics is to effectively analyze functional data that frequently comes from advances in modern science and technology in areas such as meteorology and biomedical sciences. Functional linear regression with scalar response is a popular functional data analysis technique and it is often a common problem to determine a functional association if a functional predictor variable affects the scalar response in the models. Recently, Kong et al. (Journal of Nonparametric Statistics, 28, 813-838, 2016) established classical testing methods for this based on functional principal component analysis (of the functional predictor), that is, the resulting eigenfunctions (as a basis). However, the eigenbasis functions are not generally suitable for regression purpose because they are only concerned with the variability of the functional predictor, not the functional association of interest in testing problems. Additionally, eigenfunctions are to be estimated from data so that estimation errors might be involved in the performance of testing procedures. To circumvent these issues, we propose a testing method based on fixed basis such as B-splines and show that it works well via simulations. It is also illustrated via simulated and real data examples that the proposed testing method provides more effective and intuitive results due to the localization properties of B-splines.

현대 과학기술의 발전으로 인해 함수 형태의 자료(functional data)는 기상학, 생물의학과 다양한 분야에서 발생하고 있으며 이러한 자료를 분석하는 것은 새롭고 흥미로운 통계과제라 할 수 있다. 스칼라 반응변수를 가진 함수형 선형회귀 모형(functional linear regression models with scalar response)은 널리 사용되는 함수형 자료 분석기법 중의 하나라 할 수 있고 이 회귀 모형에서 함수형 자료 (설명변수) 가 스칼라 반응변수에 영향력을 미치는지 검정하는 것은 중요한 문제라 할 수 있다. 최근, Kong 등은 함수형 주성분분석(functional principle component analysis)에 의한 차원 축소, 즉, 함수형 주성분분석 결과 얻어지는 고유함수(eigenfunctions)를 활용한 검정방법을 제안했다. 하지만, 그 고유함수들은 검정문제에서 관심사인 함수형 설명변수와 스칼라 반응변수의 연관성이 아니라 함수형 설명변수의 변동만을 고려하기 때문에 회귀문제에 사용하기에 일반적으로 적합한 기저가 아니다. 게다가, 자료로부터 추정하여야 하기 때문에 이 불필요한 추정오차가 검정 절차 성능에 포함될 가능성이 있다. 이러한 단점을 피하기 위해 본 논문에서는 기존의 고유기저함수가 아닌 고정기저(fixed basis)인 B-스플라인(B-splines) 함수를 활용한 검정 방법을 제안한고 모의실험을 통해 검정방법이 잘 작동한다는 것을 보여준다. 또한, 제안한 검정 방법은 B-스플라인의 국소화 성질 때문에 때론 효율적이고 직관적인 결과를 제공하는데 이를 모의실험과 실증자료 분석을 통해 보여줄 것이다.

Keywords

References

  1. Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties, Statistical Science, 11, 89-121. https://doi.org/10.1214/ss/1038425655
  2. Eubank, R. L. (1988). Spline Smoothing and Nonparametric Regression, Marcel Dekker, New York.
  3. Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression, Annals of Statistics, 35, 70-91. https://doi.org/10.1214/009053606000000957
  4. Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. Journal of the Royal Statistical Society, B68, 109-126.
  5. Hall, P., Lee, Y. K., and Park, B. U. (2007). A method for projecting functional data onto a low-dimensional space, Journal of Computational and Graphical Statistics, 16 799-812. https://doi.org/10.1198/106186007X257296
  6. James, G., Wang, J., and Zhu, J. (2009). Functional linear regression that's interpretable, Annals of Statistics, 37, 2083-2108. https://doi.org/10.1214/08-AOS641
  7. Kneip, A. and Utikal, K. J. (2001). Inference for density families using functional principal component analysis, Journal of the American Statistical Association, 96, 519-532. https://doi.org/10.1198/016214501753168235
  8. Kong, D., Staicu, A.-M., and Maity, A. (2016). Classical testing in functional linear models, Journal of Nonparametric Statistics, 28, 813-838. https://doi.org/10.1080/10485252.2016.1231806
  9. Lee, E. R. and Park, B. U. (2012). Sparse estimation in functional linear regression, Journal of Multivariate Analysis, 105, 1-17. https://doi.org/10.1016/j.jmva.2011.08.005
  10. Muller, H. G. and Stadtmuller (2005). Generalized functional linear models, Annals of Statistics, 33, 774-805. https://doi.org/10.1214/009053604000001156
  11. Ramsay, J. and Silverman, B. W. (1997). Functional Data Analysis, Springer.
  12. Ramsay, J. and Silverman, B. W. (2002). Applied Functional Data Analysis, Springer.
  13. Ramsay, J., Hooker, G., and Silverman, B. W. (2009). Functional Data Analysis with R and MATLAB, Springer.
  14. Wang, J. L., Chiou, J., and Muller, H. G. (2016). Functional data analysis, Annual Review of Statistics and Its Application, 3, 257-295. https://doi.org/10.1146/annurev-statistics-041715-033624
  15. Yao, F., Muller, H., and Wang, J. (2005). Functional data analysis for sparse longitudinal data, Journal of the American Statistical Association, 100, 577-590. https://doi.org/10.1198/016214504000001745
  16. Zhu, H., Yao, F., and Zhang, H. H. (2014). Structured functional additive regression in reproducing kernel Hilbert spaces, Journal of the Royal Statistical Society, B76, 581-603.