• Title/Summary/Keyword: B-spline basis

Search Result 64, Processing Time 0.023 seconds

A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form. (B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬)

  • 김덕수;류중현;이현찬;신하용;장태범
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF

Level Set based Shape Optimization using Extended B-spline Bases (확장 B-spline 기저 함수를 이용한 레벨셋 기반의 형상 최적 설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.391-396
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady state heat conduction problems. The only inside of complicated domain is identified by the level set functions and taken into account in computation. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. The nucleation of holes is possible whenever and wherever necessary during the optimization using a topological derivative concept.

  • PDF

A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function

  • Chen, Jianping;Tang, Wenyong;Huang, Pengju;Xu, Li
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The paper is devoted to study a mesh-free analysis method of structural elements of engineering structures based on B-spline Wavelet Basis Function. First, by employing the moving-least square method and the weighted residual method to solve the structural displacement field, the control equations and the stiffness equations are obtained. And then constructs the displacement field of the structure by using the m-order B-spline wavelet basis function as a weight function. In the end, the paper selects the plane beam structure and the structure with opening hole to carry out numerical analysis of deformation and stress. The Finite Element Method calculation results are compared with the results of the method proposed, and the calculation results of the relative error norm is compared with Gauss weight function as weight function. Therefore, the clarification verified the validity and accuracy of the proposed method.

A Study of Geometric Modeling for Ship Hull Forms Using Open Uniform B-spline Surface (Open 균일 B-spline 곡면을 이용한 선체 곡면 표현에 관한 연구)

  • H.K. Shin;K.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.21-27
    • /
    • 1991
  • This paper outlines the method of formulating the bi-cubic B-spline surface of ship hull, employing the open uniform knot vector as well as the periodic uniform knot vector. An appropriate set of B-spline control vertices to generate the B-spline surface is determined by obtaining the pseudoinverse matrix of basis functions. The comparison between the given offsets and the resulting coordinates from the generated ship hull surface shows a good agreement. To check the fairness of the surface Gaussian curvature is calculated on many small subpatches and displayed on the black-and-white plot of the isoparametric net of the surface.

  • PDF

The forecast of curve shape reforming by variation of B-spline knot vector values (B-스플라인 노트백터 값 변화에 의한 곡선 형상 변화 예측)

  • 김희중;정재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.866-871
    • /
    • 1994
  • B-spline curves and surfaces are effective solutions for design and modelling of the freeform models. The control methods of these are using with control points, knot vectors and weight of NURBS. Using control point is easy and resonable for representation of general models. But the movement of control points bring out the reformation of original convex hull. The B-splines with nonuniform knot vector provide good result of the shape modification without convex hull reforming. B-splines are constructed with control points and basis functions. Nonuniform knot vectors effect on the basis functions. And the blending curves describe the prorities of knot vectors. Applying of these, users will forecast of the reformed curves after modifying controllabler primitives.

  • PDF

A COMPARISON OF RADIAL BASIS FUNCTIONS IN APPLICATIONS TO IMAGE MORPHING

  • Jin, Bo-Ram;Lee, Yong-Hae
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.321-332
    • /
    • 2010
  • In this paper, we experiment image warping and morphing. In image warping, we use radial basis functions : Thin Plate Spline, Multi-quadratic and Gaussian. Then we obtain the fact that Thin Plate Spline interpolation of the displacement with reverse mapping is the efficient means of image warping. Reflecting the result of image warping, we generate two examples of image morphing.

Level Set based Shape Optimization Using Extended B-spline Bases (확장 B-스플라인 기저함수를 이용한 레벨셋 기반의 형상 최적설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-245
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady-state heat conduction problems. The only inside of complicated domain identified by the level set functions is taken into account in computation, so we can remove the effects of domain outside parts in heat conduction problem. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. Using topological derivative concept, the nucleation of holes for topological changes can be made whenever and wherever necessary during the optimization.

ECG signal compression based on B-spline approximation (B-spline 근사화 기반의 심전도 신호 압축)

  • Ryu, Chun-Ha;Kim, Tae-Hun;Lee, Byung-Gook;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.653-659
    • /
    • 2011
  • In general, electrocardiogram(ECG) signals are sampled with a frequency over 200Hz and stored for a long time. It is required to compress data efficiently for storing and transmitting them. In this paper, a method for compression of ECG data is proposed, using by Non Uniform B-spline approximation, which has been widely used to approximation theory of applied mathematics and geometric modeling. ECG signals are compressed and reconstructed using B-spline basis function which curve has local controllability and control a shape and curve in part. The proposed method selected additional knot with each step for minimizing reconstruction error and reduced time complexity. It is established that the proposed method using B-spline approximation has good compression ratio and reconstruct besides preserving all feature point of ECG signals, through the experimental results from MIT-BIH Arrhythmia database.

An Alternative Point-Matching Technique for Fredholm Integral Equations of Second Kind (제2종 Rredholm 적분방정식의 새로운 수식해법)

  • 이직열;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.83-86
    • /
    • 1985
  • An alternative technique (or the numerical solution of Fredholm integral equations of second kind is presented. The approximate solution is obtained by fitting the data in mixed form at knots in the region of the problem. To decrease the error in the numerical solution, cubic B-spline functions which are twice continuously differentiable at knots are employed as basis function. For a given example, the results of this technique are compared with those of Moment method employing pulse functions for basis function and delta functions for test function and found to br in good agreement.

  • PDF