DOI QR코드

DOI QR Code

One-Step Engineering of a Stable, Selectable Marker-Free Autoluminescent Acinetobacter baumannii for Rapid Continuous Assessment of Drug Activity

  • Jiang, Huofeng (School of Life Sciences, University of Science and Technology of China) ;
  • Gao, Yamin (State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences) ;
  • Zeng, Sheng (State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences) ;
  • Wang, Shuai (State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences) ;
  • Cao, Zhizhong (State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital) ;
  • Tan, Yaoju (State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital) ;
  • Yin, Huancai (CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences) ;
  • Liu, Jianxiong (State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital) ;
  • Zhang, Tianyu (State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)
  • Received : 2019.05.07
  • Accepted : 2019.08.01
  • Published : 2019.09.28

Abstract

The rising cases of multidrug-resistant Acinetobacter baumannii (Ab) and the lack of effective drugs call for quick attention. Here, based on a Tn7 transposon and Xer/dif system, we constructed a stable, selectable marker-free autoluminescent Ab capable of producing visible light without extra substrates. Utilization of this autoluminescent reporter strain has the potential to reduce the time, effort and costs required for the evaluation of activities of anti-Ab drug candidates in vitro.

Keywords

References

  1. Visca P, Antunes LCS, Towner KJ. 2014. Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis. 71: 292-301. https://doi.org/10.1111/2049-632X.12125
  2. Beggs CB, Kerr KG, Snelling AM, Sleigh PA. 2006. Acinetobacter spp. and the clinical environment. Indoor. Built. Environ. 15: 19-24. https://doi.org/10.1177/1420326X06062501
  3. Morgan DJ, Liang SY, Smith CL, Johnson JK, Harris AD, Furuno JP, et al. 2010. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect. Control Hosp. Epidemiol. 31: 716-721. https://doi.org/10.1086/653201
  4. Lambiase A, Piazza O, Rossano F, Del Pezzo M, Tufano R, Catania MR. 2012. Persistence of carbapenem-resistant Acinetobacter baumannii strains in an Italian intensive care unit during a forty-six month study period. New Microbiol. 35: 199-206.
  5. Maraki S, Mantadakis E, Mavromanolaki VE, Kofteridis DP, Samonis G. 2016. A 5-year surveillance study on antimicrobial resistance of Acinetobacter baumannii clinical isolates from a tertiary Greek hospital. Infect. Chemother. 48: 190-198. https://doi.org/10.3947/ic.2016.48.3.190
  6. Vocat A, Hartkoorn RC, Lechartier B, Zhang M, Dhar N, Cole ST, et al. 2015. Bioluminescence for assessing drug potency against nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 59: 4012-4019. https://doi.org/10.1128/AAC.00528-15
  7. Hakkila K, Maksimow M, Karp M, Virta M. 2002. Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal. Biochem. 301: 235-242. https://doi.org/10.1006/abio.2001.5517
  8. Brodl E, Winkler A, Macheroux P. 2018. Molecular mechanisms of bacterial bioluminescence. Comput. Struct. Biotechnol. J. 16: 551-564. https://doi.org/10.1016/j.csbj.2018.11.003
  9. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, et al. 2005. A Tn7-based broadrange bacterial cloning and expression system. Nat. Methods. 2: 443-448. https://doi.org/10.1038/nmeth765
  10. Choi K-H, Schweizer HP. 2006. Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat. Protoc. 1: 153. https://doi.org/10.1038/nprot.2006.24
  11. Mitra R, McKenzie GJ, Yi L, Lee CA, Craig NL. 2010. Characterization of the TnsD-attTn7 complex that promotes site-specific insertion of Tn7. Mob. DNA. 1: 18-18. https://doi.org/10.1186/1759-8753-1-18
  12. Damron FH, McKenney ES, Barbier M, Liechti GW, Schweizer HP, Goldberg JB. 2013. Construction of mobilizable mini-Tn7 vectors for bioluminescent detection of gram-negative bacteria and single-copy promoter lux reporter analysis. Appl. Environ. Microbiol. 79: 4149-4153. https://doi.org/10.1128/AEM.00640-13
  13. Ducas-Mowchun K, De Silva PM, Crisostomo L, Fernando DM, Chao T-C, Pelka P, et al. 2019. Next generation of Tn7-based single-copy insertion elements for use in multi- and pan-drug-resistant strains of Acinetobacter baumannii. Appl. Environ. Microbiol. 85: e00066-00019.
  14. Bloor AE, Cranenburgh RM. 2006. An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl. Environ. Microbiol. 72: 2520. https://doi.org/10.1128/AEM.72.4.2520-2525.2006
  15. Cascioferro A, Boldrin F, Serafini A, Provvedi R, Palù G, Manganelli R. 2010. Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria. Appl. Environ. Microbiol. 76: 5312-5316. https://doi.org/10.1128/AEM.00382-10
  16. Kono N, Arakawa K, Tomita M. 2011. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genomics 12: 19-19. https://doi.org/10.1186/1471-2164-12-19
  17. Yildirim S, Thompson MG, Jacobs AC, Zurawski DV, Kirkup BC. 2016. Evaluation of parameters for high efficiency transformation of Acinetobacter baumannii. Sci Rep. 6: 22110. https://doi.org/10.1038/srep22110
  18. Yang F, Tan Y, Liu J, Liu T, Wang B, Cao Y, et al. 2014. Efficient construction of unmarked recombinant mycobacteria using an improved system. J. Microbiol. Methods. 103: 29-36. https://doi.org/10.1016/j.mimet.2014.05.007
  19. Yang F, Njire MM, Liu J, Wu T, Wang B, Liu T, et al. 2015. Engineering more stable, selectable marker-Free autoluminescent mycobacteria by one step. PLoS One 10: e0119341. https://doi.org/10.1371/journal.pone.0119341
  20. Zhang T, Bishai WR, Grosset JH, Nuermberger EL. 2010. Rapid assessment of antibacterial activity against Mycobacterium ulcerans by using recombinant luminescent strains. Antimicrob. Agents Chemother. 54: 2806-2813. https://doi.org/10.1128/AAC.00400-10
  21. Clinical and Laboratory Standards Institute. 2017. Performance Standards for Antimicrobial Susceptibility Testing, M100-27. 27th Ed. Clinical and Laboratory Standards Institute, Wayne, PA.
  22. Zhang T, Li SY, Nuermberger EL. 2012. Autoluminescent Mycobacterium tuberculosis for rapid, real-time, non-invasive assessment of drug and vaccine efficacy. PLoS One 7: e29774. https://doi.org/10.1371/journal.pone.0029774

Cited by

  1. Recent Advances in Genetic Tools for Acinetobacter baumannii vol.11, 2020, https://doi.org/10.3389/fgene.2020.601380
  2. Where are we and how far is there to go in the development of an Acinetobacter vaccine? vol.20, pp.3, 2021, https://doi.org/10.1080/14760584.2021.1887735