• Title/Summary/Keyword: Acinetobacter baumannii

Search Result 105, Processing Time 0.035 seconds

Outbreak of Acinetobacter septicemia in a neonatal intensive care unit (신생아 집중치료실에서 집단 발생한 Acinetobacter septicemia)

  • Kim, Myo Jing;Lee, Hye Jin;Son, Sang Hee;Huh, Jae Won
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.5
    • /
    • pp.494-499
    • /
    • 2006
  • Purpose : Acinetobacter baumannii is increasingly recognized as an important cause of nosocomial infection, especially in neonatal intensive care units. But little is known about the clinical significance and hospital epidemiology of Acinetobacter species other than A. baumannii. The objective of this study is to describe the clinical characteristics and epidemiology of septicemia due to Acinetobacter species other than A. baumannii. Methods : We retrospectively reviewed 11 cases of blood culture proven nosocomial infection which occured in our neonatal intensive care unit from $4^{th}$ to $24^{th}$, February, 2004. To establish epidemiological analysis, we performed environmental cultures and an antibiogram was obtained from susceptability tests of isolated Acinetobacter species. Results : Clinical manifestations including fever, poor feeding, abdominal distension, diarrhea, bloody stool passage, vomiting, tachypnea and apnea were similar to other infectious diseases. Benign clinical courses were compared with poor prognose, including a high mortality rate in septicemia due to A. baumannii. The major predisposing factor among our patients was the presence of a peripheral intravascular catheter. Antibiogram was similar, but surveillance cultures of environmental specimens failed to identify the source of infection. Conclusion : Acinetobacter species other than A. baumannii were often considered relatively avirulent bacteria, but could be pathologic organisms if cultured in patients with clinical symptoms.

Anitimicrobial Effects of Zanthoxylum schinifolium Extracts against Multi-drug Resistant Acinetobacter baumannii (산초(Zanthoxylum schinifolium) 추출물의 다제내성 Acinetobacter baumannii 억제 효과)

  • Lee, Keyong-Ho;Rhee, Ki-Hyeong
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.4
    • /
    • pp.336-340
    • /
    • 2011
  • The aim of this study was to investigate the possible utilization of Zanthoxylum schinifolium as a source of antimicrobial agents. The antimicrobial effects of Zanthoxylum schinifolium extracts were investigated against Acinetobacter baumannii, which is a multi-drug resistant pathogen, and 5 other pathogenic microorganisms. The hexane extract of Zanthoxylum schinifolium was more effective than the ethyl acetate, n-butanol and methanol extracts which were active against Acinetobacter baumannii 25, with minimum inhibitory concentrations(MIC) ranging from 0.8 mg/ml to 1.6 mg/ml. Tetracycline had no effect on Acinetobacter baumanniii. The hexane extract was highly active against Candida albicans IFO 6258, with an MIC of 1.5 mg/ml. In contrast, the ethyl acetate, n-butanol and methanol extracts showed no activity against the 5 pathogenic microorganisms. Furthermore, a combination of hexane extract and ethyl acetate extract was significantly more active against the 5 Acinetobacter baumannii strains than n-butanol and methanol. These results suggest that Zanthoxylum schinifolium extracts have great potential as antimicrobial compounds against multi-drug resistant pathogens, and further studies are warranted.

Genomic Species Identification of Acinetobacter calcoaceticus - Acinetobacter baumannii Complex Strains by Amplified Ribosomal DNA Restriction Analysis (ARDRA) (Amplified Ribosomal DNA Restriction Analysis (ARDRA) 방법을 이용한 국내 분리 Acinetobacter calcoaceticus - Acinetobacter baumannii Complex 균주의 유전자종 동정)

  • Oh, Jae-Young;Cho, Jae-We;Park, Jong-Chun;Lee, Je-Chul
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.1
    • /
    • pp.69-76
    • /
    • 2000
  • Members of the genus Acinetobacter are recognized as newer pathogens of the nosocomial infection with an increasing frequency in recent years. Strains that belonged to A. calcoaceticus A. baumannii complex (genomic species 1, 2, 3, and 13TU) were major groups associated with nosocomial infection. Phenotypic identification was unreliable and laborious method to classify Acinetobacter strains into 19 genomic species. Rapid and reliable identification of clinical isolates is essential to diagnosis and epidemiology of Acinetobacter. We investigated the suitability of amplified ribosomal DNA restriction analysis (ARDRA) to identify genomic species of 131 Acinetobacter isolates. The 16S rRNA genes (ribosomal DNA) were enzymatically amplified and the amplified PCR products were restricted independently with the enzymes, AluI, CfoI, and MboI. Genomic species of Acinetobacter was classified by the combinations of restriction patterns. The analysis was showed that restriction profiles were characteristic for each genomic species. One hundred fourteen isolates were identified as A. baumannii, twelve were identified as genomic species 13TU, and one was identified as genomic species 3. Four isolates were found to be unknown organisms. All of the isolates which were identified to A. baumannii by phenotypic tests were completely discriminated into A. baumannii and genomic species 13TU by ARDRA. This study demonstrates that ARDRA is a rapid and simple techniques for the identification of Acinetobacter species according to the genomic species.

  • PDF

Antibiotic Resistance Patterns of Acinetobacter baumannii and Pseudomonas aeruginosa from a Hospital in Daegu City Area (대구지역병원에서 분리된 Acinetobacter baumannii와 Pseudomonas aeruginosa의 항생제 내성현황)

  • Kim, Su-Jung;Lee, Jae-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.2
    • /
    • pp.75-79
    • /
    • 2008
  • 86 clinical isolates of Acinetobacter baumannii and 116 clinical isolates of Pseudomonas aeruginosa strains isolated from clinical specimens were collected from a hospital in Daegu city area. We investigated the Antimicrobial susceptibility patterns of A. baumannii and P. aeruginosa isolated from sputum, urine, wound, blood, nasal swab, body fluid. The antimicrobial resistance of A. baumannii were shown 96% for piperacillin, carbenicillin 82%. cefotaxime 78%, ciprofloxacin 77%, sulfamethoxazole/trimethoprime 76%, ceftazidime 75%, tobramycin 72%. For P. aeruginosa, the resistance of cefotaxime and sulfamethoxazole/trimethoprime were 100%, carbenicillin 49%, piperacillin 47%, ticarcillin 45%, ticarcillin/ clavulanic acid 40%.

  • PDF

Distribution of Antimicrobial Resistant Genes in Acinetobacter calcoaceticus-baumannii Complex Isolated from Clinical Specimens in Chungcheong, Korea (충청지역의 임상검체로부터 분리된 Acinetobacter calcoaceticus-baumannii Complex를 대상으로 항균제 내성 유전자 비교분석)

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.427-434
    • /
    • 2017
  • Species that belong to the Acinetobacter calcoaceticus-baumannii (Acb) complex are major causes of hospital-acquired infections. They are important opportunistic pathogens. These species are usually multidrug resistant (MDR), and the therapeutic options to treat the infections caused by these species are limited. In the present study, we investigated fluoroquinolone resistance mechanisms in 53 ciprofloxacin resistant Acinetobacter species isolates in Chungcheong, Korea. Antimicrobial susceptibilities were determined using the disk-diffusion method. Detections of genes and identification of mutations associated with fluoroquinolone resistance were carried out using PCR and DNA sequencing. In our study, 47 out of 53 ciprofloxacin resistant Acinetobacter isolates harbored sense mutations at the 83rd residue (serine to leucine) in the gyrA gene as well as at the 80th residue (serine to leucine) in the parC gene. Among the 47 isolates harboring sense mutations in gyrA and parC gene, 44 isolates were A. baumannii and 3 isolates were A. pittii. Plasmid-mediated quinolone resistance (PMQR) determinants were detected in isolates in our study. Among the 46 ciprofloxacin resistant A. baumannii isolates, 41 showed type A, B, or F banding patterns on their REP-PCR profiles. This result suggests that clonal relation and horizontal spreading of the bacterial isolates have been around hospitals in Chungcheong area. To prevent colonization and disseminations of fluoroquinolone resistance Acb complex isolates, continuous investigation and monitoring of antimicrobial resistant determinants of MDR isolates are needed.

Clonal Dissemination of Multidrug Resistant Acinetobacter baumannii Isolates Harboring blaOXA-23 at One University Hospital in Daejeon, Korea (대전지역 소재 대학병원에 blaOXA-23 유전자를 가지고 있는 다제내성 Acinetobacter baumannii의 확산)

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • Acinetobacter species isolates are important opportunistic pathogens and commonly implicated in nosocomial infections. The therapeutic options for treatment of the bacterial infections are limited because the bacteria isolates are usually multidrug resistant (MDR). In the current study, we investigated various carbapenemase genes in 68 Acinetobacter species isolates. Antimicrobial susceptibilities were tested using the disk diffusion method. Screening of carbapenemase genes was performed via multiplex PCR. In addition, PCR and DNA sequencing were used to identify the carbapenemase genes. Repetitive extragenic palindromic-PCR (REP-PCR) was also performed to assess the clonality of isolates. In our study, A. baumannii isolates were highly resistant to all agents tested while all non-A. baumannii isolates were susceptible to all agents tested, with the exception of aztreonam and cefotaxime. All 51 A. baumannii isolates contained the $bla_{OXA-51}$ gene and 37 (72.5%) isolates also harbored the $bla_{OXA-23}$ gene. In addition, 39 MDR A. baumannii isolates were identified in our study and 37 isolates contained the $bla_{OXA-23}$ gene. The 37 MDR strains harboring $bla_{OXA-23}$ showed type I (n=22) or type II (n=15) banding patterns on their REP-PCR profiles. Our results suggest clonal relation and horizontal spreading of MDR A. baumannii isolates containing the $bla_{OXA-23}$ gene at the hospital located in Daejeon. Continuous investigation of antimicrobial resistant determinants and monitoring emergence and dissemination of MDR isolates is required to prevent and control infection and colonization of MDR A. baumannii isolates.

Characterization of $\beta$-Ketoadipate Pathway from Multi-Drug Resistance Bacterium, Acinetobacter baumannii DU202 by Proteomic Approach

  • Park, Soon-Ho;Kim, Jae-Woo;Yun, Sung-Ho;Leem, Sun-Hee;Kahng, Hyung-Yeel;Kim, Seung-Il
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.632-640
    • /
    • 2006
  • In this study, the biodegradative activities of monocyclic aromatic compounds were determined from the multi-drug resistant (MDR) Acinetobacter baumannii, which were studied in the form of clinical isolates from a hospital in Korea. These bacteria were capable of biodegrading monocyclic aromatic compounds, such as benzoate and p-hydroxybenzoate. In order to determine which pathways are available for biodegradation in these stains, we conducted proteome analyses of benzoate, and p-hydroxybenzoate-cultured A. baumannii DU202, using 2-DE/MS analysis. As genome DB of A. baumannii was not yet available, MS/MS analysis or de novo sequencing methods were employed in the identification of induced proteins. Benzoate branch enzymes [catechol 1,2-dioxygenase (CatA) and benzoate dioxygenase $\alpha$ subunit (BenA)] of the $\beta$-ketoadipate pathway were identified under benzoate culture condition and p-hydroxybenzoate branch enzymes [protocatechuate 3,4-dioxygenas $\alpha$ subunit (PcaG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaR)] of the $\beta$-ketoadipate pathway were identified under p-hydroxybenzoate culture condition, respectively, thereby suggesting that strain DU202 utilized the $\beta$-ketoadipate pathway for the biodegradation of monocyclic aromatic compounds. The sequence analysis of two purified dioxygenases (CatA and PcaGH) indicated that CatA is closely associated with the CatA of Acinetobacter radiresistance, but PcaGH is only moderately associated with the PcaGH of Acinetobacter sp. ADPI. Interestingly, the fused form of PcaD and PcaC, carboxymuconolactone decarboxylase (PcaCD), was detected on benzoate-cultured A. baumannii DU202. These results indicate that A. baumannii DU202 exploits a different $\beta$-ketoadipate pathway from other Acinetobacter species.

Treatment of Multidrug-Resistant Acinetobacter baumannii Pneumonia after Glucocorticoids Administration for Interstitial Lung Disease: A Case Report (사례 보고: 간질성 폐질환 치료를 위한 glucocorticoids 투여 환자에게 발생한 다제 내성 Acinetobacter baumannii 폐렴의 치료)

  • Kim, Hae-Sook;Shin, Hyun-Taek;Kim, Hyun-Ah
    • Korean Journal of Clinical Pharmacy
    • /
    • v.22 no.2
    • /
    • pp.181-186
    • /
    • 2012
  • Objective: To report a fatal case of Multidrug-resistant Acinetobacter baumannii (MDR-AB) in a patient with interstitial lung disease (ILD) on high-dose glucocorticoids. Case Summary: A 66-year-old man with a history of coniosis was transferred to the hospital with progressive cough and sputum production. This patient has been diagnosed with pneumonia and ILD on admission, requires antimicrobial therapy and systemic immunosuppressants. He received high dose of methylprednisolone and cyclophosphamide for ILD as well as ceftriaxone and azithromycin for pneumonia. On day 7 in the intensive care units (ICUs), patient had fever and leukocytosis, thus antimicrobials were switched to piperacillin. After 13 days in the ICU, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA) were isolated on transtracheal aspirate (TTA) and meropenem was initiated. However, it was revealed a multidrug-resistant Acinetobacter baumannii (MDR-AB) species, resistant to carbapenem. Patient was administered colistin but expired due to septic shock on day 84. Discussion: Systemic immunosuppressive therapy can result in infections that may compromise patient's survival. MDR-AB has emerged as a serious cause of nosocomial infections in immunocompromised patients. MDR-AB is resistant to most standard antimicrobials and therapeutic options are limited. Conclusion: We report our recent experience with a fatal MDR-AB pneumonia in a patient with ILD, who had to be treated with high dose glucocorticoids and immunosuppressnts.

Molecular Typing of Acinetobacter Baumannii Strains by Randomly Amplified Polymorphic DNA (RAPD) Analysis (Randomly Amplified Polymorphic DNA (RAPD) 분석에 의한 Acinetobacter Baumannii 균주의 유전형 분류)

  • Oh, Jae-Young;Cho, Jae-Wee;Park, Jong-Chun;Lee, Je-Chul
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.129-139
    • /
    • 2000
  • Acinetobacter baumannii strains are emerging pathogens of the nosocomial infection with an increasing frequency in recent years. The therapeutic difficulty due to the wide spread of multiple resistant strains was major problem in A. baumannii infection. It seems likely that high frequency of A. baumannii infection will be increasing epidemiological importance in the future. However, the current limited understanding of the epidemiology of A. baumannii infections is caused by lack of a rapid and practical method for the molecular characterization of A. baumannii strains. This study was undertaken to determine molecular types and genetic similarity among A. baumannii strains isolated from four hospitals by RAPD analysis. Eighty-five strains, including 40 from Chunnam University Hospital, 27 from Dankook University Hospital, 15 from Yonsei University Hospital, and 3 from Seonam University Hospital, were classified into three molecular types. Molecular type II was the most common pattern and included 72 strains. All strains from Dankook University Hospital and 40 strains from Chunnam University Hospital belonged to molecular type I or II. A. baumannii strains form Yonsei University Hospital were very distant similarity values. The range of genetic similarity values among 85 strains of A. baumannii was 0.26 to 1.00. Although phenotypes including biotype and antimicrobial resistance pattern of A. baumannii strains were same or very similar to each other, their RAPD patterns were quite different. Typing with phenotypes was found to be less reliable than molecular typing by RAPD analysis. These results suggest that RAPD analysis provides rapid and simple typing method of A. baumannii strains for epidemiological studies. This work is the first epidemiological report of A. baumannii infections in Korea and it is hoped that results of this work may contribute to a better understanding of the clinical importance and epidemiology of A. baumannii strains.

  • PDF

Molecular Characterization and Antimicrobial Susceptibility of Biofilm-forming Acinetobacter baumannii Clinical Isolates from Daejeon, Korea (대전지역에서 분리된 생물막 형성 Acinetobacter baumannii 임상분리주의 분자유전학적 특성과 항균제 감수성양상)

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.100-109
    • /
    • 2018
  • The emergence and dissemination of multidrug-resistant (MDR) Acinetobacter baumannii isolates have been reported worldwide, with most of these possessing the ability to form biofilms. Biofilm formation is an important virulence factor associated with the resistance to disinfection and desiccation. This study examined the genetic basis of antimicrobial resistance mechanisms of biofilm-forming A. baumannii clinical isolates. Imaging and quantification of biofilms were performed by a crystal violet assay and 46 biofilm-forming A. baumannii isolates were selected. Subsequently, 16 isolates belonging to different clones were identified using REP-PCR, and detection of the antimicrobial determinants in the isolates was carried out. The 16 isolates included 9 non-MDR and 7 MDR isolates. The mean biomass $OD_{560}$ values of the non-MDR (0.96) and MDR (1.05) isolates differed but this difference was not significant. In this study, most biofilm-forming MDR A. baumannii isolates contained various antimicrobial resistance determinants ($bla_{OXA-23}$, armA, and mutations of gyrA and parC). On the other hand, most biofilm-forming non-MDR A. baumannii isolates did not contain antimicrobial resistance determinants. These results suggest that there is little correlation between the biofilm-forming ability and antimicrobial susceptibility in A. baumannii isolates. In addition, the emergence of MDR A. baumannii clinical isolates is generally caused by mutations of the genes associated with antimicrobial resistance and/or the acquisition of various antimicrobial resistance determinants.