Abstract
Let ${\mathcal{H}}$ be a complex Hilbert space and ${\mathcal{B}}({\mathcal{H}})$ the algebra of all bounded linear operators on ${\mathcal{H}}$. In this paper, we prove that if ${\varphi}:{\mathcal{B}}({\mathcal{H}}){\rightarrow}{\mathcal{B}}({\mathcal{H}})$ is a unital surjective bounded linear map, which preserves m- isometries m = 1, 2 in both directions, then there are unitary operators $U,V{\in}{\mathcal{B}}({\mathcal{H}})$ such that ${\varphi}(T)=UTV$ or ${\varphi}(T)=UT^{tr}V$ for all $T{\in}{\mathcal{B}}({\mathcal{H}})$, where $T^{tr}$ is the transpose of T with respect to an arbitrary but fixed orthonormal basis of ${\mathcal{H}}$.