DOI QR코드

DOI QR Code

DIAGONAL SUMS IN NEGATIVE TRINOMIAL TABLE

  • Choi, Eunmi (Department of Mathematics Hannam University) ;
  • Oh, Yuna (Department of Mathematics Hannam University)
  • Received : 2019.01.31
  • Accepted : 2019.09.10
  • Published : 2019.09.30

Abstract

We study the negative trinomial table T' of $(x^2+x+1)^{-n}$ and its t/u-slope diagonals for any t, u > 0. We investigate recurrence formula of the t/u-slope diagonal sums of T' and find interrelationships with t/u-slope diagonal sums of the trinomial table T.

Keywords

References

  1. E. Choi, Diagonal sums of negative pascal table, JP Journal of Algebra, Number Theory and Applications 39 (2017), 457-477. https://doi.org/10.17654/NT039040457
  2. V. E. Hoggatt and M. Bicknell, Diagonal sums of the trinomial triangle, Fibo. Quart. 12 (1974), 47-50.
  3. K. Kuhapatanakul and L. Sukruan, The generalized tribonacci numbers with negative subscripts, Integers 14 (2014), A32.
  4. K. Kuhapatanakul and L. Sukruan, n-tribonacci triangles and applications, Int. J. Math. Edu. in Science and Technology, 45 (7) (2014), 1068-1113. https://doi.org/10.1080/0020739X.2014.892164
  5. E. Kilic, Tribonacci sequences with certain indices and their sums, Ars. Comb. 86 (2008), 13-22.
  6. J. Lee, A note on the negative Pascal triangle, Fibo. Quart. 32 (1994), 269-270.
  7. C.W. Puritz, Extending Pascal's triangle upwards, Math. Gaz. 65 (431) (1981), 42-22. https://doi.org/10.2307/3617938