DOI QR코드

DOI QR Code

A study on the Optimization of Activated carbon Adsorbent Preparation condition and Evaluation of Application Supporting of K-Fe-Li ternary metal ions for Improving Adsorption Capacity of Hydrogen Sulfide (H2S)

황화수소(H2S) 흡착성능 증진을 위한 K-Fe-Li 3원계 금속이온물질이 담지된 활성탄 흡착제 제조조건 최적화 및 적용성 평가 연구

  • Choi, Sung Yeol (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Han, Dong hee (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 최성열 (경기대학교 일반대학원 환경에너지공학과) ;
  • 한동희 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2019.05.31
  • Accepted : 2019.07.03
  • Published : 2019.09.30

Abstract

In this study an optimization of the preparation conditions of activated carbon with a ternary metal ion material to treat $H_2S$, which is classified as a representative odor substance, was carried out. For a metal ion material for enhancing the adsorption performance of hydrogen sulfide, performance enhancement was confirmed by combining Li and Fe or a ternary combination (K, Li, Fe) based on KI, which is a substance promoting hydrogen sulfide adsorption performance. Also, it was determined by XRD analysis that the reaction of each active substance with $H_2S$ was because of binding. The adsorption performance increased more than 3 times with heat treatment of the adsorbent with nitrogen compared with heat treatment with air. The maximum adsorption constant ($q_m$) value of the optimum adsorbent was 97.07, which is 6 times higher than that of the existing K-based impregnated activated carbon. It was confirmed that the objective adsorption amount ($0.3g\;g^{-1}$) was secured by an equilibrium between the mass transfer rate and adsorption rate. From the results, it was confirmed that the performance improvement was noticeable even when activated carbon with a reagent grade activated carbon particle size was modified. It was confirmed that the adsorption performance exists at high relative humidity levels of 60 and 100%, and the optimized preparation can be applied to a wet process such as a scrubber downstream.

본 연구에서는 대표 악취물질로 분류되는 황화수소(hydrogen sulfide, $H_2S$)를 처리하기 위해 3원계의 금속이온 물질이 담지된 활성탄의 제조조건 최적화에 대한 연구를 수행하였다. $H_2S$ 흡착성능 증진을 위한 금속이온 물질로는 $H_2S$ 흡착성능 증진 물질인 KI를 기반으로 Li 및 Fe 또는 3원계(K, Li, Fe)로 조합 시 성능 증진을 확인하였으며, 이는 XRD 분석을 통해 각 활성 물질의 $H_2S$와의 반응 또한 결합에 의한 것으로 판단하였다. 흡착제의 열처리시 질소를 이용한 경우 공기에 비교하여 흡착 성능이 약 3배 이상 증가하였다. 최적 흡착제의 최대 흡착량 상수($q_m$)값은 97.07로써 기존 K 기반 첨착활성탄 대비 6배의 흡착성능이 나타났으며, 물질전달속도와 흡착속도 간 평형에 의해 객관적인 흡착량($0.3g\;g^{-1}$ 이상)이 확보됨을 확인하였다. 입자 크기에 따른 흡착제 성능 차이를 확인한 결과, 성능의 구배는 존재하나 시약급 활성탄 입자 크기를 가지는 활성탄의 개질 시에도 성능 증진이 뚜렷함을 확인하였다. 상대습도가 비교적 높은 60, 100%에서도 흡착성능이 존재함을 확인하였으며, 이를 통해 스크러버 후단과 같은 습도가 높은 실 공정에도 적용 가능할 것으로 판단된다.

Keywords

References

  1. Park, G. H., Oh, G. Y., Lee, J. H., Jung, K. H., and Jung, S. Y., "Comparison of Odor Characteristics Emitted from the 3 Type of Sewage Treatment Plant," Korean J. Odor Research & Eng., 4(4), 196-206.
  2. Lee, J. H., and Kim, D. K., "Application of Fungal Cultivation in Biofiltration Systems for Hydrogen Sulfide Removal," J. Odor Indoor Environ., 17(3), (2018).
  3. Han, Y. S., Choi, W. J., Kim, T. J., Kim, I. G., and Oh, K. J., "Removal of Mixed Odor (H2S/CH3SH) using Char Adsorbent Made from Sewage Sludge," J. Kor. Soc. Environ. Eng., 30(11), 1132-1138 (2008).
  4. Popoola, L. T., Grema, A. S., Latinwo, G. K., Gutti, B., and Balogun, A. S., "Corrosion Problems during Oil and Gasproduction and Its Mitigation," Int. J. Ind. Chem., 4(1), 35 (2013). https://doi.org/10.1186/2228-5547-4-35
  5. Park, D. S., Lim, J. Y., Cho, Y. G., Song, S. J., and Kim, J. H., "A Study on the Comparison on Adsorption Characteristics of Zeolite and DETOX for the Removal of $H_2S$," JKAIS, 15(7), 4675-4681 (2014).
  6. Jung, C. K., "Utilization of Discarded Tree Debris for Commercial Production of Activated Carbon," MAFRA, (2000).
  7. Kwon, W. T., "Preparation of High Attrition Resistance Sorbents on High Temperature Desulfurization," Theories and Applications of Chem. Eng., 2(1), 709-712 (1996).
  8. Min, H. K., Ahmad, T., Park, M., and Lee, S. S., "Physical Property with the Manufacturing Conditions of Activated Carbon for Mercury Adsorption," J. Korean Soc. Atmos. Environ., 31(3), 302-314 (2015). https://doi.org/10.5572/KOSAE.2015.31.3.302
  9. Adib, F., Bagreev, A., and Bandosz, T. J., "Effect of Surface Characteristics of Wood-based Activated Carbons on Adsorption of Hydrogen Sulfide," J. Colloid Interface Sci., 214, 407-415 (1999). https://doi.org/10.1006/jcis.1999.6200
  10. Laosiripojana, N., Sitthikhankaew, R., Predapitakkun, S., Kiattikomol, R. W., Pumhiran, S., and Assabumrungrat, S., "Comparative Study of Hydrogen Sulfide Adsorption by using Alkaline Impregnated Activated Carbons for Hot Fuel Gas Purification," Energy Procedia, 9, 15-24 (2011). https://doi.org/10.1016/j.egypro.2011.09.003
  11. Yan, R., Liang, D. T., Tsen, L., and Tay, H. J., "Kinetics and Mechanisms of H2S Adsorption by Alkaline Activated Carbon," Environ. Sci. Technol., 36, 4460-4466 (2002). https://doi.org/10.1021/es0205840
  12. Choi, D. Y., Lee, J. W., Jang, S. C., Ahn, B. S., and Choi, D. K., "Adsorption Dynamics of Hydrogen Sulfide in Impregnated Activated Carbon Bed," Adsorption, 14(4-5), 533-538 (2008).. https://doi.org/10.1007/s10450-008-9118-9
  13. Barelli, L., Bidini, G., Arespacochaga, N. D., Perez, L., and Sisani, E., "Biogas use in High Temperature Fuel Cells: Enhancement of KOH-KI Activated Carbon Performance Toward $H_2S$ Removal," Int. J. Hydrogen Energy, 42, 10341-10353 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.021
  14. Rakmak, N., Wiyaratn, W., Bunyakan, C., and Chungsiriporn, J., "Synthesis of Fe/MgO Nano-crystal Catalysts by Sol-gel Method for Hydrogen Sulfide Removal," Chem. Eng. J., 162, 84-90 (2010). https://doi.org/10.1016/j.cej.2010.05.001
  15. Perego, C., and Villa, P., "Catalyst Preparation Methods," Catal. Today, 34, 281-305 (1997). https://doi.org/10.1016/S0920-5861(96)00055-7
  16. Cho, K. C., Im, Z. W., Cho, S. W., Song, J. S., and Oh, K. J., "A Study on the HS Removal using NACO Impregnated Activated Carbon (I) - The Evaluation of Adsorption Isotherm of HS on Impregnated Activated Carbon," J. Kor. Soc. Environ. Eng., 21(10), 2003-2011 (1999).
  17. Luis, P. F. S. S., "Novel Separators and Electrodes for the Li-S system," Ph.D. Dissertation, Universidade de Lisboa, Portugal (2017).
  18. Yumura, M., and Furimsky, E., "Hydrogen Sulphide Adsorption and Decomposition in the Presence of Manganese Nodules," Appl. Catal., 16(2), 157-167 (1985). https://doi.org/10.1016/S0166-9834(00)84469-3
  19. Zhao, J., Yang, L., Li, F., Yu, R., and Jin, C., "Structural Evolution in the Graphitization Process of Activated Carbon by High-pressure Sintering," Carbon, 47(3), 744-751 (2009). https://doi.org/10.1016/j.carbon.2008.11.006
  20. Belhachemi, M., and Addoun, F., "Effect of Heat Treatment on the Surface Properties of Activated Carbons," J. Chem., (2011).
  21. Volesky, B., and Holan, Z. R., "Biosorption of Heavy Metals," Biotechnol. Prog., 11(3), 235-250 (1990). https://doi.org/10.1021/bp00033a001
  22. Suh, K. H., Ahn, K. H., Cho, M. C., Cho, J. K., Jin, H. J., and Hong, Y. K., "Sargassum Confusum for Biosorption of Pb and Cr," J. Korea Soc. Fish Ocean Technol., 34, 1-6 (2001).
  23. Choi, I. W., Kim, S. U., Seo, D. C., Kang, B. H., Sohn, B. K., Rim, Y. S., Heo, J. S., and Cho, J. S., "Biosorption of Heavy Metals by Biomass of Seaweeds," KJEA, 24, 370-378 (2005).
  24. Langmuir, I., "The Adsorption of Gases on Plane Surface of Glass, mica and platinum," J. Am. Chem. Soc., 40, 1361-1403 (1918). https://doi.org/10.1021/ja02242a004
  25. Allen, S. J., and Brown, P. A., "Isotherm Analyses for Single Component and Multi‐component Metal Sorption onto Lignite," J. Chem. Technol. Biotechnol, 62(1), (1995).
  26. Phillips, C. S. G., II (B). "Organic and Biochemical. The Chromatography of Gases and Vapours," Discuss. Faraday Soc., 7, 241-248 (1949). https://doi.org/10.1039/df9490700241
  27. Hedden, K., Huber, L., and Rao, B. R., "Adsorptive Reinigung von Schwefelwasserstoffhaltigen Abgasen," VDI-Ber., 253, (1976).