• Title/Summary/Keyword: 활성 금속 이온

Search Result 396, Processing Time 0.026 seconds

Characterization of the enzymatic property of thermostable carboxypeptidase Taq by addition of metal ions and replacement of active center metal (금속이온 첨가와 활성중심 금속의 치환에 따른 내열성 카르복시펩 티다제 Taq의 효소적 특성 변화에 관한 연구)

  • Lee, Sang-Hyeon;Ha, Jong-Myung;Ha, Bae-Jin
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.682-687
    • /
    • 2002
  • We analyzed improvement on the enzyme activity of CPase Taq by addition of various metal ions. The enzyme activity was increased more then four times by 1 mM cobalt ion and almost three times by 1 mM calcium ion. However, the active center metal zinc ion did not affect the enzyme activity. In order to investigate whether the active center metal affects the enzyme activity, zinc ion which is occupied the active center of the enzyme was replaced by cobalt ion which activates the enzyme activity very effectively. Since the cobalt ion in the active center of the cobalt-substituted CPase Taq did not affect the enzyme activity, it could act as the natal metal ion in the active center of the enzyme.

Effect of Metal Ion on the Bentonite Modified with Cationic Surfactant (양이온성 계면활성제를 이용한 유기 벤토나이트의 합성시 금속 이온의 첨가 영향)

  • Kim, Soo-Hong;Park, Jae-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.677-682
    • /
    • 2006
  • Dodecyldimethylethylammonium (DDDEA), a cationic surfactant, and aluminum metal ions were used with bentonite to synthesize to synthesize an improved organo bentonite. Among three different synthesis procedure for organo bentonites, aluminium-pillared bentonite showed the highest DDDEA sorption, which indicated that aluminium-pillared organo bentonite would exhibit the highest sorption capacity for organic contaminants. Aluminium pillared organo bentonite also showed a high sorption capability for phosphorus, while it did not exhibit strong sorption for nitrate. In the meantime, more desorption was observed with aluminium-pillared organo bentonite than ordinary organo bentonites.

Methanol-to-Olefin Conversion over UZM-9 Zeolite: Effect of Transition Metal Ion Exchange on its Deactivation (UZM-9 제올라이트에서 메탄올의 올레핀으로 전환반응: 전이금속 이온 교환이 촉매의 활성저하에 미치는 영향)

  • Kim, Sun Jung;Jang, Hoi-Gu;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.181-188
    • /
    • 2013
  • The effect of transition metal ion exchange into UZM-9 zeolite with LTA framework on its deactivation in methanol-to-olefin (MTO) conversion was discussed. The ion exchange of copper, cobalt, nickel, and iron did not induce any notable change in the crystallinity, crystal morphology, and acidity of UZM-9. The small cage entrance of UZM-9 caused the high selectivity to lower olefins in the MTO conversion, while its large cages allowed the rapid further cyclecondensation of active intermediates, polymethylbenzenes including hexamethylbenzene, resulting in a rapid deactivation. The UZM-9 containing copper and cobalt ions showed considerably slow deactivations. The interaction between transition metal ions and polymethylbenzene cation radicals, the active intermediates, generated in the MTO conversion stabilized the radicals and slowed down the deactivation of UZM-9.

Cultural Condition of the Production of Alkaline Pretense by f parahaemolyticus(1) (V. parahaemolyticus에 의한 Alkaline Pretense 생산조건(1))

  • 양지영;한종흔;강현록;황미경;차재호
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.2
    • /
    • pp.176-178
    • /
    • 2000
  • V parahaemolyticus possessed an extracellular alkaline pretense activity during the stationary growth phase. Various factors such as nitrogen sources, the concentration of NaCl and metal ions were investigated for optimizing the production of alkaline pretense from V. parahaemolyticus ATCC 17802. Among the nitrogen sources tested skim milk showed the distinct increase of the activity and the activity was the highest at 2% in final concentration after 60 hours incubation. The addition of NaCl and metal ions did not increase the alkaline pretense activity. CoC$_2$, CuC1$_2$, and HgCl rather highly inhibited alkaline protease production.

  • PDF

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction II. Effect of Alkali Metal Salt on the Activity of CoMo Catalyst (황에 저항성을 가지는 수성가스 전환반응 촉매의 연구 II. CoMo 촉매의 활성에 미치는 알칼리 금속염의 영향)

  • Kim, Joon Hee;Lee, Ho In
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.696-702
    • /
    • 1998
  • The effect of alkali metal salt on the activity of Co-Mo catalyst which has high resistance to sulfur poisoning for water gas shift reaction(WGSR) was studied. Two groups of catalysts were prepared to investigate the effects of anion and cation in alkali metal salts. For K-doped catalysts made with various potassium salts having different anion, the catalytic activity was explained to depend mainly on the BET surface area. Among the catalysts prepared by various nitrates of alkali metal as precursor, the Li-doped catalyst showed the best activity, and the others did not make significant differences giving relatively low activities. And the change of BET surface area by varying the loading of alkali metal showed a similar trend to that of activity. In this case, the activity was dependent on both BET surface area and the ratio of $Mo^{6+}$ with a tetrahedral coordination symmetry to $Mo^{6+}$ with an octahedral one, $Mo^6+[T]/Mo^{6+}[O]$ value.

  • PDF

Sorption of Ni(II), Cu(II) and Fe(III) ions from Aqueous Solutions Using Activated Carbon (활성탄소를 이용한 수용액으로부터의 Ni(II), Cu(II) 그리고 Fe(III) 이온의 흡착)

  • Hanafi, H.A.;Hassan, H.S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.533-540
    • /
    • 2010
  • An activated carbon was tested for its ability to remove transition metal ions from aqueous solutions. Physical, chemical and liquid-phase adsorption characterizations of the carbon were done following standard procedures. Studies on the removal of Ni(II), Cu(II) and Fe(III) ions were attempted by varying adsorbate dose, pH of the metal ion solution and time in batch mode. The equilibrium adsorption data were fitted with Freundlich and Langmuir and the isotherm constants were evaluated, equilibrium time of the different three metal ions were determined. pH was found to have a significant role to play in the adsorption. The processes were endothermic and the thermodynamic parameters were evaluated. Desorption studies indicate that ion-exchange mechanism is operating.

Catalytic Combustion of Benzene over Metal Ion-Substituted Y-Type Zeolites (금속이온이 치환된 Y형 제올라이트에서 벤젠의 촉매연소반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.161-167
    • /
    • 2016
  • Catalytic combustion of benzene over various metal cation-exchanged zeolites has been investigated. Y(4.8)-type zeolite showed the highest activity among the used zeolites and Cu/Y(4.8) catalyst also showed the highest activity among metal cation/ Y(4.8) zeolites. The catalytic activity increased according to the amount of adsorbed oxygen acquired from O2 TPD results. The catalytic activity also increased with an increase of Cu cation concentration on Cu/Y(4.8) catalysts. The conversion of benzene on the combustion reaction depended on not benzene concentration but the oxygen concentration. In addition, the introduction of water into reactants decreased the catalytic activity.

Removal of Co++ Ion in the Hollow Fiber Ultrafiltration System using Anion Surfactant Micellar Enhancement (음이온 계면활성제 미셀형성을 이용한 중공사 한외여과막 시스템에서의 코발트(Co)이온 제거)

  • Yang, Hyun-Soo;Han, Kwang-Hee;Choi, Kwang-Soon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.109-117
    • /
    • 1996
  • Removal of metal ions on the ultrafiltration membrane with micellar-enhanced with anion surfactants is a recently developed technique which can remove heavy metals and small molecular weight ions from wastewater with simple separation process and without a phase change. Above a certain concentration, so called the critical micelle con binding cationic cobalt ions and anionic surfactants, were removed by ultrafiltration membrane. The transmembrane pressure difference had a relatively small effect on the rejection coefficient of metal ions on the ultrafiltration membrane whereas the level of anionic surfactant-to-metal ratio (S/M) had a substantial effect.

  • PDF

Effect of Metal Ions on Iron Oxidation Rate of Thiobacillus ferrooxidans Used in a Bioleaching Process (Bioleaching에 사용되는 Thiobacillus ferrooxidans의 철산화 속도에 미치는 금속 이온의 영향)

  • 최문성;조경숙
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • The activity of microorganisms is an important factor that determines the efficiency of the bacterial recovery of precious metals from low-grade ore. Metal-leaching microorganisms must have a tolerance, within the concentration levels encountered to leached metals. In this study, the tolerance levels of Thiobacillus ferroxidans to the single and mixed metal ions systems, composed of $Zn^{2+}$, $Cu^{2+}$, $Ni^{2+}$, and $Cd^{2+}$ were investigated. When single metal ions of $Zn^{2+}$ (10~60 g/L), $Cu^{2+}$ (1~6 g/L), $Ni^{2+}$ (1~6 g/L), or $Cd^{2+}$ (1~6 g/L) were added to the growth medium of T. ferrooxidans, the iron oxidation rate of this bacterium was not significantly inhibited. The maximum inhibition percentage observed on the iron oxidation rate of T. ferrooxidans was approximately 50% in the medium supplemented with two or three mixed metal ions of $Cu^{2+}$, $Ni^{2+}$, and $Cd^{2+}$. However, when $Zn^{2+}$ was also added to the medium with the other metal ions, the inhibitory effect on the iron oxidation activity of T. ferroxidans was remarkably increased.

  • PDF

Selective Disproportionation of Toluene over Various Cation-exchanged ZSM-5 Catalysts (양이온 교환된 ZSM-5 촉매상에서 톨루엔의 선택적인 반응)

  • Jong Shin Yoo;Byoung Joon Ahn;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.127-132
    • /
    • 1983
  • The catalytic activity of ZSM-5 catalyst for the disproportionation of toluene is dependent on the type of cation exchanged, the degree of ion-exchange and the reaction temperature. The activity increases in the order of alkaline-, alkali earth-, hydrogen, and rare-earth-exchanged ZSM-5 and decreases with increasing degree of cation exchange. Among the ion-exchanged ZSM-5 catalyst, only Cs-ZSM-5 shows predominant selectivity for p-xylene. The selectivity increases with increasing degree of $Cs^+$-exchange and decreasing reaction temperature. This phenomenon is interpreted in terms of shape selectivity arising from the partial blocking of channel intersections by large cesium ions.

  • PDF