References
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47. https://doi.org/10.12989/CAC.2018.21.1.047.
- Asteris, P.G. and Kolovos, K.G. (2017), "Self-compacting concrete strength prediction using surrogate models", Neur. Comput. Appl., 31(1), 1-16. https://doi.org/10.1007/s00521-017-3007-7.
- Bazant, Z.P. and Thonguthai, W. (1979), "Pore pressure in heated concrete walls: theoretical prediction", Mag. Concrete Res., 31(107), 67-76. https://doi.org/10.1680/macr.1979.31.107.67.
- Bilgehan, M. and Kurtoglu, A.E. (2016), "ANFIS-based prediction of moment capacity of reinforced concrete slabs exposed to fire", Neur. Comput. Appl., 27(4), 869-881. https://doi.org/10.1007/s00521-015-1902-3.
- Bostrom, L., McNamee, R., Albrektsson, J. and Johansson, P. (2018), "Screening test methods for determination of fire spalling of concrete", RISE Report.
- Boussabaine, A.H. (1996), "The use of artificial neural networks in construction management: a review", Constr. Manage. Econom., 14(5), 427-436. https://doi.org/10.1080/014461996373296.
- Bro, R. and Smilde, A. (2014), "Principal component analysis", Anal. Meth., 6(9), 2812. https://doi.org/10.1039/c3ay41907j.
-
BSI, and European Committee for Standardization (2004), Design of Concrete Structures-Part 1-2: General Rules-Structural Fire Design, Eurocode2
$\S$ . https://doi.org/10.1002/jcp.25002. - Buch, S.H. and Sharma, U.K. (2019), "Fire resistance of eccentrically loaded reinforced concrete columns", Fire Technol., 1-36. https://doi.org/10.1007/s10694-019-00823-x
- CEN (2002), Eurocode 1: Actions on Structures-Part 1-2: General Actions-Actions on Structures Exposed to Fire.
- Chapra, S.C. and Raymond, C.P. (2010), Numerical Methods for Engineers, 6th Edition, McGraw-Hill, New York.
- Cobaner, M. (2011), "Evapotranspiration estimation by two different neuro-fuzzy inference systems", J. Hydrol., 398(3-4), 292-302. https://doi.org/10.1016/J.JHYDROL.2010.12.030.
- Cobaner, M., Unal, B. and Kisi, O. (2009), "Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data", J. Hydrol., 367(1-2), 52-61. https://doi.org/10.1016/J.JHYDROL.2008.12.024.
- Daldaban, F., Ustkoyuncu, N. and Guney, K. (2006), "Phase inductance estimation for switched reluctance motor using adaptive neuro-fuzzy inference system", Energy Convers. Manage., 47(5), 485-493. https://doi.org/10.1016/j.enconman.2005.05.020
- Dwaikat, M.B. and Kodur, V.K.R. (2009), "Hydrothermal model for predicting fire-induced spalling in concrete structural systems", Fire Saf. J., 44(3), 425-434. https://doi.org/10.1016/J.FIRESAF.2008.09.001.
- Erdem, H. (2017), "Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks", Comput. Concrete, 19(6), 711. https://doi.org/10.12989/CAC.2017.19.6.711.
- Eredm, R.T., Kantar, E., Gucuyen, E. and Anil, O. (2013), "Estimation of compression strength of polypropylene fibre reinforced concrete using artificial neural networks", Comput. Concrete, 12(5), 613-625. https://doi.org/10.12989/cac.2013.12.5.613.
- Hass, R. (1986), "Practical rules for the design of reinforced concrete and composite columns submitted to fire", Technical Report, Vol. 69, T.U. Braunschweig.(in German)
- Hodhod, O.A., Said, T.E. and Ataya, A.M. (2018), "Prediction of creep in concrete using genetic programming hybridized with ANN", Comput. Concrete, 21(5), 513. https://doi.org/10.12989/CAC.2018.21.5.513.
- Ibrahimbegovic, A., Boulkertous, A., Davenne, L., Muhasilovic, M. and Pokrklic, A. (2010), "On modeling of fire resistance tests on concrete and reinforced-concrete structures", Comput. Concrete, 7(4), 285-301. https://doi.org/10.12989/cac.2010.7.4.285.
- Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), "Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence", Automatic Control, IEEE. https://doi.org/10.1109/TAC.1997.633847.
- Kalifa, P., Chene, G. and Galle, C. (2001), "High-temperature behaviour of HPC with polypropylene fibres-From spalling to microstructure", Cement Concrete Res., 31(10), 1487-1499. https://doi.org/10.1016/S0008-8846(01)00596-8.
- Khoury, G.A. (2000), "Effect of fire on concrete and concrete structures", Pr. Struct. Eng. Mater., 2(4), 429-447. https://doi.org/10.1002/pse.51.
- Kisi, O. and Cobaner, M. (2009), "Modeling river stage-discharge relationships using different neural network computing techniques", CLEAN-Soil, Air, Water, 37(2), 160-169. https://doi.org/10.1002/clen.200800010.
- Klingsch, E.W.H. (2014), "Explosive spalling of concrete in fire", PhD Thesis, ETH Zurich, Zurich.
- Kodur, V. and McGrath, R. (2003), "Fire endurance of highstrength concrete columns", Fire Technol., 39(1), 73-87. https://doi.org/10.1023/A:1021731327822.
- Kodur, V.K.R. (2018), "Innovative strategies for enhancing fire performance of high-strength concrete structures", Adv. Struct. Eng., 21(11), 1723-1732. https://doi.org/10.1177/1369433218754335.
- Kodur, V.K.R., Cheng, F., Wang, T., Latour, J. and Leroux, P. (2001), "Fire resistance of high-performance concrete columns", IRC-IR-834, National Research Council Canada.
- Kodur, V.K.R., McGrath, R., Leroux, P. and Latour, J. (2005), "Experimental studies for evaluating the fire endurance of high-strength concrete columns", Internal Report 81, National Research Council Canada.
- Kodur, V.K.R., McGrath, R., Leroux, P., Latour, J. and MacLaurin, J. (2000), "Experimental studies on the fire endurance of highstrength concrete columns", National Research Council Canada.
- Koza, J.R. (1992), "A genetic approach to finding a controller to back up a tractor-trailer truck", Proceedings of the 1992 American Control Conference, 2307-2311. https://doi.org/https://doi.org/10.23919/ACC.1992.4792548.
- Lee, E.W.M., Yuen, R.K.K., Lo, S.M., Lam, K.C. and Yeoh, G.H. (2004), "A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire", Fire Saf. J., 39(1), 67-87. https://doi.org/10.1016/S0379-7112(03)00092-4.
- Lie, T. and Woollerton, J. (1988), Fire Resistance of Reinforced Concrete Columns, NRC Publications Archive, National Research Council Canada.
- Lingam, A. and Karthikeyan, J. (2014), "Prediction of compressive strength for HPC mixes containing different blends using ANN", Comput. Concrete, 13(5), 621-632. https://doi.org/10.12989/cac.2014.13.5.621.
- Liu, J.C., Tan, K.H. and Yao, Y. (2018), "A new perspective on nature of fire-induced spalling in concrete", Constr. Build. Mater., 184(1), 581-590. https://doi.org/10.1016/j.conbuildmat.2018.06.204.
- Mansouri, I. and Kisi, O. (2015), "Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches", Compos. Part B: Eng., 70, 247-255. https://doi.org/10.1016/J.COMPOSITESB.2014.11.023.
- Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2018), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neur. Comput. Appl., 29(3), 873-888. https://doi.org/10.1007/s00521-016-2492-4.
- Meacham, B., Engelhardt, M. and Kodur, V. (2009), "Collection of data on fire and collapse, faculty of architecture building", NSF Engineering Research and Innovation Conference, Honolulu, Hawaii. http://efectis.com/nl_en/index.htm.
- Myllymaki, J. and Lie, T. (1991), Fire Resistance Test of a Square Reinforced Concrete Column, National Research Council Canada.
- Naji, S., Shamshirband, S., Basser, H., Alengaram, U.J., Jumaat, M.Z. and Amirmojahedi, M. (2016), "Soft computing methodologies for estimation of energy consumption in buildings with different envelope parameters", Energy Efficiency, 9(2), 435-453. https://doi.org/10.1007/s12053-015-9373-z.
- Naser, M., Abu-Lebdeh, G. and Hawileh, R. (2012), "Analysis of RC T-beams strengthened with CFRP plates under fire loading using ANN", Constr. Build. Mater., 37, 301-309. https://doi.org/10.1016/j.conbuildmat.2012.07.001.
- Naser, M.Z. (2011), "Behavior of RC beams strengthened with CFRP laminates under fire-A finite element simulation", American University of Sharjah. https://dspace.aus.edu/xmlui/handle/11073/2729.
- Naser, M.Z. (2018), "Deriving temperature-dependent material models for structural steel through artificial intelligence", Constr. Build. Mater., 191, 56-68. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.186.
- Naser, M.Z. (2019), "Heuristic machine cognition to predict fireinduced spalling and fire resistance of concrete structures", Auto. Constr., 106, 102916. https://doi.org/10.1016/J.AUTCON.2019.102916.
- Naser, M.Z. and Chehab, A. (2018), "Materials and design concepts for space-resilient structures", Pr. Aerosp. Sci., 98, 74-90. https://doi.org/10.1016/j.paerosci.2018.03.004.
- Naser, M.Z. and Seitllari, A. (2019), "Concrete under fire: an assessment through intelligent pattern recognition", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-019-00805-1.
- Peris-Sayol, G., Paya-Zaforteza, I., Balasch-Parisi, S. and Alos-Moya, J. (2017), "Detailed analysis of the causes of bridge fires and their associated damage levels", J. Perform. Constr. Facil., 31(3), 04016108. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000977.
- Phan, L.T. and Carino, N.J. (2000), "Fire performance of high strength concrete: Research needs", Adv. Technol. Struct. Eng., ASCE, Reston, VA. https://doi.org/10.1061/40492(2000)181.
- Rodrigues, J.P.C., Laim, L. and Correia, A.M. (2010), "Behaviour of fiber reinforced concrete columns in fire", Compos. Struct., 92, 1263-1268. https://doi.org/10.1016/j.compstruct.2009.10.029.
- Saha, P., Prasad, M.L.V. and Kumar, P.R. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31. https://doi.org/10.12989/CAC.2017.20.1.031.
- Seitllari, A. (2014), "Traffic flow simulation by Neuro-Fuzzy approach", Second International Conference on Traffic, Belgrade. https://trid.trb.org/view/1408239.
- Seitllari, A. and Kutay, M.E. (2018), "Soft computing tools to predict progression of percent embedment of aggregates in chip seals", Tran. Res. Record, 2672(12), 32-39.. https://doi.org/10.1177/0361198118756868.
- Seitllari, A., Kumbargeri, Y., Bilgiri, K. and Boz, I. (2019), "A soft computing approach to predict and evaluate asphalt mixture aging characteristics using asphaltene as a performance indicator", Mater. Struct., (pre-print).
- Shah, A.H. and Sharma, U.K. (2017), "Fire resistance and spalling performance of confined concrete columns", Constr. Build. Mater., 156, 161-174. https://doi.org/10.1016/j.conbuildmat.2017.08.167.
- Yavuz, G. (2019), "Determining the shear strength of FRP-RC beamsusing soft computing and code methods", Comput. Concrete, 23(1), 49. https://doi.org/10.12989/CAC.2019.23.1.049.
- Zadeh, L.A. (1995), "Discussion: Probability theory and fuzzy logic are complementary rather than competitive", Technometrics, 37(3), 271-276. https://doi.org/10.1080/00401706.1995.10484330.
- Zhang, B., Cullen, M. and Kilpatrick, T. (2016), “Spalling of heated high performance concrete due to thermal and hygric gradients”, Adv. Concrete Constr 4(1), 1-14. https://doi.org/10.12989/acc.2016.4.1.001.
Cited by
- A soft computing approach to predict and evaluate asphalt mixture aging characteristics using asphaltene as a performance indicator vol.52, pp.5, 2019, https://doi.org/10.1617/s11527-019-1402-5
- Evaluation Method of Relative Humidity Changes in Below-Grade Concrete Structure Space Depending on Different Waterproofing Material and Installation Method vol.13, pp.3, 2019, https://doi.org/10.3390/ma13030742
- Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering and Sciences vol.57, pp.6, 2019, https://doi.org/10.1007/s10694-020-01069-8