DOI QR코드

DOI QR Code

Variation of the Hemispheric Asymmetry of the Equatorial Ionization Anomaly with Solar Cycle

  • Received : 2019.08.17
  • Accepted : 2019.08.28
  • Published : 2019.09.15

Abstract

In solstices during the solar minimum, the hemispheric difference of the equatorial ionization anomaly (EIA) intensity (hereafter hemispheric asymmetry) is understood as being opposite in the morning and afternoon. This phenomenon is explained by the temporal variation of the combined effects of the fountain process and interhemispheric wind. However, the mechanism applied to the observations during the solar minimum has not yet been validated with observations made during other periods of the solar cycle. We investigate the variability of the hemispheric asymmetry with local time (LT), altitude, season, and solar cycle using the electron density taken by the CHAllenging Minisatellite Payload satellite and the global total electron content (TEC) maps acquired during 2001-2008. The electron density profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate satellites during 2007-2008 are also used to investigate the variation of the hemispheric asymmetry with altitude during the solar minimum. During the solar minimum, the location of a stronger EIA moves from the winter hemisphere to the summer hemisphere around 1200-1400 LT. The reversal of the hemispheric asymmetry is more clearly visible in the F-peak density than in TEC or in topside plasma density. During the solar maximum, the EIA in the winter hemisphere is stronger than that in the summer hemisphere in both the morning and afternoon. When the location of a stronger EIA in the afternoon is viewed as a function of the year, the transition from the winter hemisphere to the summer hemisphere occurs near 2004 (yearly average F10.7 index = 106). We discuss the mechanisms that cause the variation of the hemispheric asymmetry with LT and solar cycle.

Keywords

References

  1. Appleton EV, Two anomalies in the ionosphere, Nature, 157, 691-693 (1946). https://doi.org/10.1038/157691a0
  2. Aydogdu M, North-south asymmetry in the ionospheric equatorial anomaly in the African and the West Asian regions produced by asymmetrical thermospheric winds, J. Atmos. Terr. Phys. 50, 623-627 (1988). https://doi.org/10.1016/0021-9169(88)90060-8
  3. Balan N, Bailey GJ, Moffett RJ, Su YZ, Titheridge JE, Modeling studies of the conjugate-hemisphere differences in ionospheric ionization at equatorial anomaly latitudes, J. Atmos. Terr. Phys. 57, 279-292 (1995). https://doi.org/10.1016/0021-9169(94)E0019-J
  4. Basu S, Larson J, Turbulence in the upper atmosphere: Effects on satellite systems, in 33rd Aerospace Sciences Meeting and Exhibit (AIAA), Reno, NV, 9-12 Jan 1995. https://doi.org/10.2514/6.1995-548
  5. Benkova NP, Deminov MG, Karpachev AT, Kochenova NA, Kusnerevsky YV, et al., Longitude features shown by topside sounder data and their importance in ionospheric mapping, Adv. Space Res. 10, 57-66 (1990). https://doi.org/10.1016/0273-1177(90)90186-4
  6. England SL, Zhang X, Immel TJ, Forbes JM, DeMajistre R, The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: Seasonal variability, Earth Planets Space, 61, 493-503 (2009). https://doi.org/10.1186/BF03353166
  7. Fejer BG, de Paula ER, Gonsalez SA, Woodman RF, Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res. 96, 13901-13906 (1991). https://doi.org/10.1029/91JA01171
  8. Fejer BG, de Paula ER, Heelis RA, Hanson WB, Global equatorial ionospheric vertical plasma drifts measured by the AE-E satellite, J. Geophys. Res. 100, 5769-5776 (1995). https://doi.org/10.1029/94JA03240
  9. Fejer BG, Jensen JW, Su SY, Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations, J. Geophys. Res. 113, A05304 (2008). https://doi.org/10.1029/2007JA012801
  10. Hanson WB, Moffett RJ, Ionization transport effects in the equatorial F region, J. Geophys. Res. 71, 5559-5572 (1966). https://doi.org/10.1029/JZ071i023p05559
  11. Heelis RA, Hanson WB, Interhemispheric transport induced by neutral zonal winds in the F region, J. Geophys. Res. 85, 3045-3047 (1980). https://doi.org/10.1029/JA085iA06p03045
  12. Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, et al., Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett. 33, L15108 (2006). https://doi.org/10.1029/2006GL026161
  13. Jee G, Lee HB, Kim YH, Chung JK, Cho J, Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective, J. Geophys. Res. 115, A10319 (2010). https://doi.org/10.1029/2010JA015432
  14. Jee G, Schunk RW, Scherliess L, Analysis of TEC data from the TOPEX/Poseidon mission, J. Geophys. Res. 109, A01301 (2004). https://doi.org/10.1029/2003JA010058
  15. Jee G, Schunk RW, Scherliess L, Comparison of IRI-2001 with TOPEX TEC measurements, J. Atmos. Sol.-Terr. Phys. 67, 365-380 (2005). https://doi.org/10.1016/j.jastp.2004.08.005
  16. Kil H, DeMajistre R, Paxton LJ, Zhang Y, Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI, J. Atmos. Sol.-Terr. Phys. 68, 1672-1681 (2006). https://doi.org/10.1016/j.jastp.2006.05.024
  17. Kil H, Oh SJ, Kelley MC, Paxton LJ, England SL, et al., Longitudinal structure of the vertical $E{\times}B$ drift and ion density seen from ROCSAT-1, Geophys. Res. Lett. 34, L14110 (2007). https://doi.org/10.1029/2007GL030018
  18. Kil H, Oh SJ, Paxton LJ, Fang TW, High-resolution vertical drift model driven from the ROCSAT-1 data, J. Geophys. Res. 114, A10314 (2009). https://doi.org/10.1029/2009JA014324
  19. Kil H, Paxton LJ, Causal link of longitudinal plasma density structure to vertical plasma drift and atmospheric tides: A review, in IAGA Special Sopron Book Series, vol. 2, Aeronomy of the Earth's Atmosphere and Ionosphere, eds. Abdu MA, Pancheva D (Springer, New York, 2011) 349-361.
  20. Kil H, Talaat ER, Oh SJ, Paxton LJ, England SL, Su SJ, Wave structures of the plasma density and vertical $E{\times}B$drift in low-latitude F region, J. Geophys. Res. 113, A09312 (2008). https://doi.org/10.1029/2008JA013106
  21. Lee WK, Kil H, Kwak YS, Wu Q, Cho S, et al., The winter anomaly in the middle-latitude F region during solar minimum period observed by the constellation observing system for meteorology, ionosphere, and climate, J. Geophys. Res. 116, A02302 (2011). http://doi.org/10.1029/2010JA015815
  22. Lei J, Syndergaard S, Burns AG, Solomon SC, Wang W, et al., Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results, J. Geophys. Res. 112, A07308 (2007). https://doi.org/10.1029/2006JA012240
  23. Lin CH, Liu JY, Fang TW, Chang PY, Tsai HF, et al., Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophys. Res. Lett. 34, L19101 (2007a). https://doi.org/10.1029/2007GL030741
  24. Lin CH, Wang W, Hagan ME, Hsiao CC, Immel TJ, et al., Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Threedimensional electron density structures, Geophys. Res. Lett. 34, L11112 (2007b). https://doi.org/10.1029/2007GL029265
  25. Liu H, Watanabe S, Seasonal variation of the longitudinal structure of the equatorial ionosphere: Does it reflect tidal influences from below? J. Geophys. Res. 113, A08315 (2008). https://doi.org/10.1029/2008JA013027
  26. Liu L, Zhao B, Wan W, Ning B, Zhang ML, et al., Seasonal variations of the ionospheric electron densities retrieved from constellation observing system for meteorology, ionosphere, and climate mission radio occultation measurements, J. Geophys. Res. 114, A02302 (2009). https://doi.org/10.1029/2008JA013819
  27. Mitra SK, Geomagnetic control of region $F_2$ of the ionosphere, Nature, 158, 668-669 (1946). https://doi.org/10.1038/158668a0
  28. Moffett RJ, The equatorial anomaly in the electron distribution of the terrestrial F-region, Fund. Cosmic Phys. 4, 313-391 (1979). http://adsabs.harvard.edu/abs/1979FCPh....4..313M
  29. Namba S, Maeda KI, Radio Wave Propagation (Corona, Tokyo, 1939), 86.
  30. Oh SJ, Kil H, Kim WT, Paxton LJ, Kim YH, The role of the vertical $E{\times}B$ drift for the formation of the longitudinal plasma density structure in the low-latitude F region, Ann. Geophys. 26, 2061-2067 (2008). https://doi.org/10.5194/angeo-26-2061-2008
  31. Rishbeth H, The equatorial F-layer: progress and puzzles, Ann. Geophys. 18, 730-739 (2000). https://doi.org/10.1007/s00585-000-0730-6
  32. Sagawa E, Immel TJ, Frey HU, Mende SB, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV, J. Geophys. Res. 110, A11302 (2005). https://doi.org/10.1029/2004JA010848
  33. Scherliess L, Fejer BG, Radar and satellite global equatorial F region vertical drift model, J. Geophys. Res. 104, 6829-6842 (1999). https://doi.org/10.1029/1999JA900025
  34. Scherliess L, Thompson DC, Schunk RW, Longitudinal variability of low-latitude total electron content: Tidal influences, J. Geophys. Res. 113, A01311 (2008). https://doi.org/10.1029/2007JA012480
  35. Stolle C, Manoj C, Lühr H, Maus S, Alken P, Estimating the daytime equatorial ionization anomaly strength from electric field proxies, J. Geophys. Res. 113, A09310 (2008). https://doi.org/10.1029/2007JA012781
  36. Su YZ, Bailey GJ, Oyama KI, Balan N, A modeling study of the longitudinal variations in the north-south asymmetries of the ionospheric equatorial anomaly, J. Atmos. Terr. Phys. 59, 1299-1310 (1997). https://doi.org/10.1016/S1364-6826(96)00016-8
  37. Tsai HF, Liu JY, Tsai WH, Liu CH, Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions, J. Geophys. Res. 106, 30363-30369 (2001). https://doi.org/10.1029/2001JA001107
  38. Tulasi Ram S, Su SY, Liu CH, FORMOSAT-3/COSMIC observations of seasonal and longitudinal variations of equatorial ionization anomaly and its interhemispheric asymmetry during the solar minimum period, J. Geophys. Res. 114, A06311 (2009). https://doi.org/10.1029/2008JA013880
  39. Venkatraman S, Heelis R, Interhemispheric plasma flows in the equatorial topside ionosphere, J. Geophys. Res. 114, 18457-18464 (2000). https://doi.org/10.1029/2000JA000012
  40. Vila P, Intertropical $F_2$ ionization during June and July 1966, Radio Sci. 6, 689-697 (1971a). https://doi.org/10.1029/ RS006i007p00689
  41. Vila P, New dynamic aspects of intertropical $F_2$ ionization, Radio Sci. 6, 945-956 (1971b). https://doi.org/10.1029/RS006i011p00945
  42. Walker GO, Li TYY, Soegijo J, Kikuchi T, Huang YN, et al., Northsouth asymmetry of the equatorial ionospheric anomaly observed in East Asia during the SUNDIAL-87 campaign, Ann. Geophys. 9, 393- 400 (1991). http://adsabs.harvard.edu/abs/1991AnGeo...9..393W
  43. West KH, Heelis RA, Longitude variations in ion composition in the morning and evening topside equatorial ionosphere near solar minimum, J. Geophys. Res. 101, 7951-7960 (1996). https://doi.org/10.1029/95JA03377