References
- Sherrod RA (2004) Understanding the emotional aspects of infertility: Implications for nursing practice. J Psychosoc Nurs Ment Health Serv 42, 40-47 https://doi.org/10.3928/02793695-20041001-08
- Boulet SL, Mehta A, Kissin DM, Warner L, Kawwass JF and Jamieson DJ (2015) Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 313, 255-263 https://doi.org/10.1001/jama.2014.17985
- Verhaak CM, Smeenk JM, Evers AW, Kremer JA, Kraaimaat FW and Braat DD (2007) Women's emotional adjustment to IVF: A systematic review of 25 years of research. Hum Reprod Update 13, 27-36 https://doi.org/10.1093/humupd/dml040
- Maleki-Saghooni N, Amirian M, Sadeghi R and Latifnejad Roudsari R (2017) Effectiveness of infertility counseling on pregnancy rate in infertile patients undergoing assisted reproductive technologies: A systematic review and meta-analysis. Int J Reprod Biomed (Yazd) 15, 391-402 https://doi.org/10.29252/ijrm.15.7.391
- Edwards RG, Steptoe PC and Purdy JM (1980) Establishing full-term human pregnancies using cleaving embryos grown in vitro. Br J Obstet Gynaecol 87, 737-756 https://doi.org/10.1111/j.1471-0528.1980.tb04610.x
- Devroey P and Van Steirteghem A (2004) A review of ten years experience of ICSI. Hum Reprod Update 10, 19-28 https://doi.org/10.1093/humupd/dmh004
- Palermo G, Joris H, Devroey P and Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17-18 https://doi.org/10.1016/0140-6736(92)92425-F
- Zegers-Hochschild F, Adamson GD, Dyer S et al (2017) The international glossary on infertility and fertility care. Fertil Steril 108, 393-406 https://doi.org/10.1016/j.fertnstert.2017.06.005
- Vaiarelli A, Cimadomo D, Capalbo A et al (2016) Pre-implantation genetic testing in ART: Who will benefit and what is the evidence? J Assist Reprod Genet 33, 1273-1278 https://doi.org/10.1007/s10815-016-0785-2
- Lee HS, Ma H, Juanes RC et al (2012) Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep 1, 506-515 https://doi.org/10.1016/j.celrep.2012.03.011
- Steffann J, Frydman N, Gigarel N et al (2006) Analysis of mtDNA variant segregation during early human embryonic development: A tool for successful NARP preimplantation diagnosis. J Med Genet 43, 244-247 https://doi.org/10.1136/jmg.2005.032326
- Wolf DP, Mitalipov N and Mitalipov S (2015) Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med 21, 68-76 https://doi.org/10.1016/j.molmed.2014.12.001
- Tachibana M, Kuno T and Yaegashi N (2018) Mitochondrial replacement therapy and assisted reproductive technology: A paradigm shift toward treatment of genetic diseases in gametes or in early embryos. Reprod Med Biol 17, 421-433 https://doi.org/10.1002/rmb2.12230
- McGrath J and Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220, 1300-1302 https://doi.org/10.1126/science.6857250
- Hyslop LA, Blakeley P, Craven L et al (2016) Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534, 383-386 https://doi.org/10.1038/nature18303
- Tachibana M, Sparman M, Sritanaudomchai H et al (2009) Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367-372 https://doi.org/10.1038/nature08368
- Tachibana M, Amato P, Sparman M et al (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature 493, 627-631 https://doi.org/10.1038/nature11647
- Kang E, Wu J, Gutierrez NM et al (2016) Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540, 270-275 https://doi.org/10.1038/nature20592
- Zhang J, Liu H, Luo S et al (2017) Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 34, 361-368 https://doi.org/10.1016/j.rbmo.2017.01.013
- Wakayama T and Yanagimachi R (1998) The first polar body can be used for the production of normal offspring in mice. Biol Reprod 59, 100-104 https://doi.org/10.1095/biolreprod59.1.100
- Wakayama T, Hayashi Y and Ogura A (1997) Participation of the female pronucleus derived from the second polar body in full embryonic development of mice. J Reprod Fertil 110, 263-266 https://doi.org/10.1530/jrf.0.1100263
- Ma H, O'Neil RC, Marti Gutierrez N et al (2017) Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 20, 112-119 https://doi.org/10.1016/j.stem.2016.10.001
- Reproduction and fertility: How could stem cells help? https://www.eurostemcell.org/reproduction-and-fertility-how-could-stem-cells-help
- Hayashi K, Ohta H, Kurimoto K, Aramaki S and Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519-532 https://doi.org/10.1016/j.cell.2011.06.052
- Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H and Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338, 971-975 https://doi.org/10.1126/science.1226889
- Hikabe O, Hamazaki N, Nagamatsu G et al (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539, 299-303 https://doi.org/10.1038/nature20104
- Zhou Q, Wang M, Yuan Y et al (2016) Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18, 330-340 https://doi.org/10.1016/j.stem.2016.01.017
- Sun M, Yuan Q, Niu M et al (2018) Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ 25, 747-764 https://doi.org/10.1038/s41418-017-0015-1
- Yamashiro C, Sasaki K, Yabuta Y et al (2018) Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362, 356-360 https://doi.org/10.1126/science.aat1674
- Jung D, Xiong J, Ye M et al (2017) In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun 8, 15680 https://doi.org/10.1038/ncomms15680
- Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G and Rathjen PD (1999) Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 112 (Pt 5), 601-612 https://doi.org/10.1242/jcs.112.5.601
- Tesar PJ, Chenoweth JG, Brook FA et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196-199 https://doi.org/10.1038/nature05972
- Brons IG, Smithers LE, Trotter MW et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191-195 https://doi.org/10.1038/nature05950
- Hayashi M, Kawaguchi T, Durcova-Hills G and Imai H (2017) Generation of germ cells from pluripotent stem cells in mammals. Reprod Med Biol 17, 107-114 https://doi.org/10.1002/rmb2.12077
- Ma H, Marti-Gutierrez N, Park SW et al (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548, 413-419 https://doi.org/10.1038/nature23305
- Zhang C, Quan R and Wang J (2018) Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet 27, R79-R88 https://doi.org/10.1093/hmg/ddy120
- Tang L, Zeng Y, Du H et al (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics 292, 525-533 https://doi.org/10.1007/s00438-017-1299-z
- Kang X, He W and Huang Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/cas-mediated genome editing. J Assist Reprod Genet 33, 581-588 https://doi.org/10.1007/s10815-016-0710-8
- Liang P, Ding C, Sun H et al (2017) Correction of beta-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811-822 https://doi.org/10.1007/s13238-017-0475-6
- Zhou C, Zhang M, Wei Y et al (2017) Highly efficient base editing in human tripronuclear zygotes. Protein Cell 8, 772-775 https://doi.org/10.1007/s13238-017-0459-6
- Evans MJ and Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156 https://doi.org/10.1038/292154a0
- Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 https://doi.org/10.1126/science.282.5391.1145
- Daughtry B and Mitalipov S (2014) Concise review: Parthenote stem cells for regenerative medicine: Genetic, epigenetic, and developmental features. Stem Cells Transl Med 3, 290-298 https://doi.org/10.5966/sctm.2013-0127
- Thomson JA, Kalishman J, Golos TG et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92, 7844-7848 https://doi.org/10.1073/pnas.92.17.7844
- Wolf DP, Morey R, Kang E et al (2017) Concise review: Embryonic stem cells derived by somatic cell nuclear transfer: A horse in the race? Stem Cells 35, 26-34 https://doi.org/10.1002/stem.2496
- Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 https://doi.org/10.1016/j.cell.2006.07.024
- Okita K, Ichisaka T and Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317 https://doi.org/10.1038/nature05934
- Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 https://doi.org/10.1016/j.cell.2007.11.019
- Ma H, Morey R, O'Neil RC et al (2014) Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177-183 https://doi.org/10.1038/nature13551
- Yamada M, Johannesson B, Sagi I et al (2014) Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510, 533-536 https://doi.org/10.1038/nature13287
- Matoba S and Zhang Y (2018) Somatic cell nuclear transfer reprogramming: Mechanisms and applications. Cell Stem Cell 23, 471-485 https://doi.org/10.1016/j.stem.2018.06.018
- GURDON JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10, 622-640
- Thuan NV, Kishigami S and Wakayama T (2010) How to improve the success rate of mouse cloning technology. J Reprod Dev 56, 20-30 https://doi.org/10.1262/jrd.09-221A
- Inoue K, Ogonuki N, Mochida K et al (2003) Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. Biol Reprod 69, 1394-1400 https://doi.org/10.1095/biolreprod.103.017731
- Wakayama S, Ohta H, Kishigami S et al (2005) Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biol Reprod 72, 932-936 https://doi.org/10.1095/biolreprod.104.035105
- Tachibana M, Amato P, Sparman M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153, 1228-1238 https://doi.org/10.1016/j.cell.2013.05.006
- Chung YG, Eum JH, Lee JE et al (2014) Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 14, 777-780 https://doi.org/10.1016/j.stem.2014.03.015
- Ziller MJ, Muller F, Liao J et al (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7, e1002389 https://doi.org/10.1371/journal.pgen.1002389
- Dinger TC, Eckardt S, Choi SW et al (2008) Androgenetic embryonic stem cells form neural progenitor cells in vivo and in vitro. Stem Cells 26, 1474-1483 https://doi.org/10.1634/stemcells.2007-0877
- Mitalipov SM, Nusser KD and Wolf DP (2001) Parthenogenetic activation of rhesus monkey oocytes and reconstructed embryos. Biol Reprod 65, 253-259 https://doi.org/10.1095/biolreprod65.1.253
- Tarkowski AK, Witkowska A and Nowicka J (1970) Experimental partheonogenesis in the mouse. Nature 226, 162-165 https://doi.org/10.1038/226162a0
- Chen Z, Liu Z, Huang J et al (2009) Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells 27, 2136-2145 https://doi.org/10.1002/stem.158
- Sritanaudomchai H, Ma H, Clepper L et al (2010) Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Hum Reprod 25, 1927-1941 https://doi.org/10.1093/humrep/deq144
- Yang H, Shi L, Wang BA et al (2012) Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605-617 https://doi.org/10.1016/j.cell.2012.04.002
- Li W, Shuai L, Wan H et al (2012) Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490, 407-411 https://doi.org/10.1038/nature11435
- Ding C, Huang S, Qi Q et al (2015) Derivation of a homozygous human androgenetic embryonic stem cell line. Stem Cells Dev 24, 2307-2316 https://doi.org/10.1089/scd.2015.0031
- Paffoni A, Brevini TA, Gandolfi F and Ragni G (2008) Parthenogenetic activation: Biology and applications in the ART laboratory. Placenta 29 Suppl B, 121-125 https://doi.org/10.1016/j.placenta.2008.08.005
- Graham CF (1974) The production of parthenogenetic mammalian embryos and their use in biological research. Biol Rev Camb Philos Soc 49, 399-424 https://doi.org/10.1111/j.1469-185X.1974.tb01085.x
- Leeb M and Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479, 131-134 https://doi.org/10.1038/nature10448
- Wutz A (2014) Haploid mouse embryonic stem cells: Rapid genetic screening and germline transmission. Annu Rev Cell Dev Biol 30, 705-722 https://doi.org/10.1146/annurev-cellbio-100913-012920
- Ford CE, Evans EP, Burtenshaw MD, Clegg HM, Tuffrey M and Barnes RD (1975) A functional 'sex-reversed' oocyte in the mouse. Proc R Soc Lond B Biol Sci 190, 187-197 https://doi.org/10.1098/rspb.1975.0086
- Hubner K, Fuhrmann G, Christenson LK et al (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251-1256 https://doi.org/10.1126/science.1083452
- Qing T, Shi Y, Qin H et al (2007) Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. Differentiation 75, 902-911 https://doi.org/10.1111/j.1432-0436.2007.00181.x
- Taketo T (2015) The role of sex chromosomes in mammalian germ cell differentiation: Can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes? Asian J Androl 17, 360-366 https://doi.org/10.4103/1008-682X.143306
- Tsai MC, Takeuchi T, Bedford JM, Reis MM, Rosenwaks Z and Palermo GD (2000) Alternative sources of gametes: Reality or science fiction? Hum Reprod 15, 988-998 https://doi.org/10.1093/humrep/15.5.988
- Fulka J Jr, Martinez F, Tepla O, Mrazek M and Tesarik J (2002) Somatic and embryonic cell nucleus transfer into intact and enucleated immature mouse oocytes. Hum Reprod 17, 2160-2164 https://doi.org/10.1093/humrep/17.8.2160
- Tesarik J, Nagy ZP, Sousa M, Mendoza C and Abdelmassih R (2001) Fertilizable oocytes reconstructed from patient's somatic cell nuclei and donor ooplasts. Reprod Biomed Online 2, 160-164 https://doi.org/10.1016/S1472-6483(10)61950-5
- Halley-Stott RP and Gurdon JB (2013) Epigenetic memory in the context of nuclear reprogramming and cancer. Brief Funct Genomics 12, 164-173 https://doi.org/10.1093/bfgp/elt011
- Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55-70 https://doi.org/10.1016/j.stem.2007.05.014
- Marcin Samiec MS (2018) Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? - A review. Annals of Animal Science (Ann Anim Sci) 18, 623-638 https://doi.org/10.2478/aoas-2018-0015