References
- Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918 https://doi.org/10.1016/j.cell.2013.04.025
- Yang H, Wang H, Shivalila CS, Cheng AW, Shi L and Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370-1379 https://doi.org/10.1016/j.cell.2013.08.022
- Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 https://doi.org/10.1126/science.1138140
- Horvath P and Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170 https://doi.org/10.1126/science.1179555
- Terns MP and Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14, 321-327 https://doi.org/10.1016/j.mib.2011.03.005
- Bhaya D, Davison M and Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45, 273-297 https://doi.org/10.1146/annurev-genet-110410-132430
- Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232 https://doi.org/10.1038/nbt.2507
- Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
- Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239 https://doi.org/10.1038/nbt.2508
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
- Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
- Hsu PD, Lander ES and Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 https://doi.org/10.1016/j.cell.2014.05.010
- Woo JW, Kim J, Kwon SI et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33, 1162-1164 https://doi.org/10.1038/nbt.3389
- Amoasii L, Hildyard JCW, Li H et al (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86-91 https://doi.org/10.1126/science.aau1549
- Niu D, Wei HJ, Lin L et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303-1307 https://doi.org/10.1126/science.aan4187
- Liang F, Han M, Romanienko PJ and Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A 95, 5172-5177 https://doi.org/10.1073/pnas.95.9.5172
- Kakarougkas A and Jeggo PA (2014) DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87, 20130685 https://doi.org/10.1259/bjr.20130685
- Lindahl T (1982) DNA repair enzymes. Annu Rev Biochem 51, 61-87 https://doi.org/10.1146/annurev.bi.51.070182.000425
- Steentoft C, Vakhrushev SY, Vester-Christensen MB et al (2011) Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Methods 8, 977-982 https://doi.org/10.1038/nmeth.1731
- Kim Y, Kweon J, Kim A et al (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31, 251-258 https://doi.org/10.1038/nbt.2517
- Lehner K, Mudrak SV, Minesinger BK and Jinks-Robertson S (2012) Frameshift mutagenesis: the roles of primertemplate misalignment and the nonhomologous end-joining pathway in Saccharomyces cerevisiae. Genetics 190, 501-510 https://doi.org/10.1534/genetics.111.134890
- Smithies O, Gregg RG, Boggs SS, Koralewski MA and Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230-234 https://doi.org/10.1038/317230a0
- Zelensky AN, Schimmel J, Kool H, Kanaar R and Tijsterman M (2017) Inactivation of Pol theta and C-NHEJ eliminates off-target integration of exogenous DNA. Nat Commun 8, 66 https://doi.org/10.1038/s41467-017-00124-3
- Schimmel J, Kool H, van Schendel R and Tijsterman M (2017) Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells. EMBO J 36, 3634-3649 https://doi.org/10.15252/embj.201796948
- Mateos-Gomez PA, Kent T, Deng SK et al (2017) The helicase domain of Poltheta counteracts RPA to promote alt-NHEJ. Nat Struct Mol Biol 24, 1116-1123 https://doi.org/10.1038/nsmb.3494
- Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788 https://doi.org/10.1038/s41576-018-0059-1
- Kim JS (2018) Precision genome engineering through adenine and cytosine base editing. Nat Plants 4, 148-151 https://doi.org/10.1038/s41477-018-0115-z
- Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 https://doi.org/10.1038/nature17946
- Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 https://doi.org/10.1126/science.aaf8729
- Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471 https://doi.org/10.1038/nature24644
- Kim K, Ryu SM, Kim ST et al (2017) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35, 435-437 https://doi.org/10.1038/nbt.3816
- Ryu SM, Koo T, Kim K et al (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36, 536-539 https://doi.org/10.1038/nbt.4148
- Liang P, Ding C, Sun H et al (2017) Correction of beta-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811-822 https://doi.org/10.1007/s13238-017-0475-6
- Liu Z, Chen M, Chen S et al (2018) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9, 2717 https://doi.org/10.1038/s41467-018-05232-2
- Yeh WH, Chiang H, Rees HA, Edge ASB and Liu DR (2018) In vivo base editing of post-mitotic sensory cells. Nat Commun 9, 2184 https://doi.org/10.1038/s41467-018-04580-3
- Chang HHY, Pannunzio NR, Adachi N and Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18, 495-506 https://doi.org/10.1038/nrm.2017.48
- Lee SH, Kim S and Hur JK (2018) CRISPR and Target-Specific DNA Endonucleases for Efficient DNA Knock-in in Eukaryotic Genomes. Mol Cells 41, 943-952 https://doi.org/10.14348/molcells.2018.0408
- Cox DB, Platt RJ and Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21, 121-131 https://doi.org/10.1038/nm.3793
- Renaud JB, Boix C, Charpentier M et al (2016) Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. Cell Rep 14, 2263-2272 https://doi.org/10.1016/j.celrep.2016.02.018
- Paquet D, Kwart D, Chen A et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125-129 https://doi.org/10.1038/nature17664
- Quadros RM, Miura H, Harms DW et al (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18, 92 https://doi.org/10.1186/s13059-017-1220-4
- Gu B, Posfai E and Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cellstage mouse embryos. Nat Biotechnol 36, 632-637 https://doi.org/10.1038/nbt.4166
- Aird EJ, Lovendahl KN, St Martin A, Harris RS and Gordon WR (2018) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol 1, 54 https://doi.org/10.1038/s42003-018-0054-2
- Nakade S, Tsubota T, Sakane Y et al (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5, 5560 https://doi.org/10.1038/ncomms6560
- Sakuma T, Nakade S, Sakane Y, Suzuki KT and Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11, 118-133 https://doi.org/10.1038/nprot.2015.140
- Yao X, Wang X, Liu J et al (2017) CRISPR/Cas9 - Mediated Precise Targeted Integration In Vivo Using a Double Cut Donor with Short Homology Arms. EBioMedicine 20, 19-26 https://doi.org/10.1016/j.ebiom.2017.05.015
- Yao X, Wang X, Hu X et al (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 27, 801-814 https://doi.org/10.1038/cr.2017.76
- Yao X, Zhang M, Wang X et al (2018) Tild-CRISPR Allows for Efficient and Precise Gene Knockin in Mouse and Human Cells. Dev Cell 45, 526-536 e525 https://doi.org/10.1016/j.devcel.2018.04.021
- Shrivastav M, De Haro LP and Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134-147 https://doi.org/10.1038/cr.2007.111
- Allen C, Halbrook J and Nickoloff JA (2003) Interactive competition between homologous recombination and non-homologous end joining. Mol Cancer Res 1, 913-920
- Hartlerode AJ and Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423, 157-168 https://doi.org/10.1042/BJ20090942
- Ceccaldi R, Rondinelli B and D'Andrea AD (2016) Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol 26, 52-64 https://doi.org/10.1016/j.tcb.2015.07.009
- Pannunzio NR, Watanabe G and Lieber MR (2018) Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 293, 10512-10523 https://doi.org/10.1074/jbc.TM117.000374
- Shibata A (2017) Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutat Res 803-805, 51-55 https://doi.org/10.1016/j.mrfmmm.2017.07.011
- Chu VT, Weber T, Wefers B et al (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33, 543-548 https://doi.org/10.1038/nbt.3198
- Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR and Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33, 538-542 https://doi.org/10.1038/nbt.3190
- Yu C, Liu Y, Ma T et al (2015) Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16, 142-147 https://doi.org/10.1016/j.stem.2015.01.003
- Riesenberg S and Maricic T (2018) Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat Commun 9, 2164 https://doi.org/10.1038/s41467-018-04609-7
- Orthwein A, Fradet-Turcotte A, Noordermeer SM et al (2014) Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344, 189-193 https://doi.org/10.1126/science.1248024
- Heyer WD, Ehmsen KT and Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44, 113-139 https://doi.org/10.1146/annurev-genet-051710-150955
- Lin S, Staahl BT, Alla RK and Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3, e04766 https://doi.org/10.7554/eLife.04766
- Li G, Zhang X, Zhong C et al (2017) Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci Rep 7, 8943 https://doi.org/10.1038/s41598-017-09306-x
- Yang D, Scavuzzo MA, Chmielowiec J et al (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep 6, 21264 https://doi.org/10.1038/srep21264
- Canny MD, Moatti N, Wan LCK et al (2018) Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol 36, 95-102 https://doi.org/10.1038/nbt.4021
- Song J, Yang D, Xu J, Zhu T, Chen YE and Zhang J (2016) RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun 7, 10548 https://doi.org/10.1038/ncomms10548
- Lee HK, Willi M, Miller SM et al (2018) Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 9, 4804 https://doi.org/10.1038/s41467-018-07322-7
- Liu Z, Lu Z, Yang G et al (2018) Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 9, 2338 https://doi.org/10.1038/s41467-018-04768-7
- Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT and Liu DR (2017) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35, 371-376 https://doi.org/10.1038/nbt.3803
- Banno S, Nishida K, Arazoe T, Mitsunobu H and Kondo A (2018) Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol 3, 423-429 https://doi.org/10.1038/s41564-017-0102-6
- Hu JH, Miller SM, Geurts MH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63 https://doi.org/10.1038/nature26155