DOI QR코드

DOI QR Code

Effects of Selenium-Treated Spinacia oleracea L. on Antioxidative Enzyme Activities and Oxidative Damage in Rats Fed High-Fat and High-Cholesterol Diets

셀레늄 강화 시금치가 고지방 및 고콜레스테롤 식이 흰쥐의 항산화 효소활성 및 산화적 손상에 미치는 영향

  • Song, Won-Yeong (Department of Food and Nutrition, International University of Korea) ;
  • Choi, Jeong-Hwa (Department of Food and Nutrition, International University of Korea)
  • 송원영 (한국국제대학교 식품영양학과) ;
  • 최정화 (한국국제대학교 식품영양학과)
  • Received : 2019.04.15
  • Accepted : 2019.06.15
  • Published : 2019.08.30

Abstract

The object of the present study was to examine the effect of selenium-treated Spinacia oleracea L. on antioxidative defense system and oxidative damage in rats fed high-fat and high-cholesterol diets. Experimental rats were divided into six groups which were composed of normal diet group (N), high-fat and high-cholesterol diet group (HF), high-fat and high-cholesterol diet with 5% or 10% non-treated spinach supplemented group (SPA or SPB) and high-fat and high-cholesterol diet with 5% or 10% selenium-treated spinach-supplemented group (SSA or SSB). In the antioxidant enzyme activities of hepatic glutathione peroxidase and superoxide dismutase, activities increased in supplementation of non-treated or selenium-treated spinach groups compared to HF group. However, there was no significant difference in the activity of hepatic catalase among all experimental groups. The microsomal superoxide radical content of the SSB group was significantly reduced compared to the HF group. The mitochondrial carbonyl values of the SSB group were significantly reduced compared to the HF group. Thiobarbituric acid reaction substance (TBARS) values in RBC and liver were also reduced in non-treated or selenium-treated spinach-supplemented groups compared to the HF group. The hepatic TBARS values of the supplementation of selenium-treated spinach groups significantly decreased compared to the supplementation of non-treated spinach groups. These results suggest that selenium-treated spinach may reduce oxidative damage by the activation of antioxidative defense system in rats fed high-fat and high-cholesterol diets.

본 연구에서는 고지방 및 고콜레스테롤 식이 흰쥐에 셀레늄 강화 시금치를 공급하여 간 조직의 항산화방어계와 지질과산화에 미치는 영향을 관찰하였다. 실험동물은 체중 $150{\pm}10g$ 내외의 Sprague-Dawley종 수컷 흰쥐를 사용하였으며, 정상식이 대조군(N), 고지방 및 고콜레스테롤 공급군(HF), 고지방 및 고콜레스테롤 공급군에 무처리 시금치 5% 공급군(SPA) 및 10% 공급군(SPB), 고지방 및 고콜레스테롤 공급군에 셀레늄 강화 처리 시금치 5% 공급군(SSA) 및 10% 공급군(SSB)으로 총 6군으로 나누었다. 식이 및 식수는 자유섭취하게 하였으며 4주간 사육한 후희생시켰다. 간 조직 중의 항산화 효소계인 SOD 활성은 HF군에 비해 셀레늄 시금치 공급군 SSA 및 SSB군에서 각각 31.4% 및 36.9% 증가하였으나 유의적인 차이는 아니였다. GSH-px 활성은 또한 SSA 및 SSB군에서 각각 5.8% 및 12.2% 증가하였으나 유의적인 차이를 나타내지 않았고, catalase 함량은 전체 군에서 유의적인 차이를 볼 수 없었다. 유리기를 소거하는 지표인 간 조직의 superoxide radical 함량은 microsome에서 정상군에 비해 HF군에서 86.7%의 유의적인 증가를 나타내었으나 10%의 셀레늄 강화 시금치를 공급한 SSB군에서는 HF군에 비해 54.8%로 유의적으로 감소하였다. 간 조직의 microsome에서의 산화단백질 함량은 정상군에 비해 HF 군에서 60.5%로 유의적으로 증가 되었으나 시금치의 공급으로 유의적으로 감소하였다. Mitochondria에서는 정상군에 비해 유의적으로 증가된 HF군의 carbonyl value 함량이 셀레늄 강화 시금치를 10% 공급한 SSB군에서 23.1%로 유의적으로 감소하였다. 과산화지질의 함량을 적혈구에서 관찰한 결과 정상군에 비해 HF 군에서 59.0%로 유의적으로 증가하였고 10% 무처리 시금치 공급군 및 10% 셀레늄 강화 공급군에서는 각각 유의적으로 감소하였다. 과산화지질의 함량을 간 조직에서 관찰 한 결과, 정상군에 비해 HF군에서 42.6%로 유의적으로 증가하였고, 또한 고지방 및 고콜레스테롤 식이로 인해 증가된 과산화지질은 시금치를 공급한 모든 군에서 유의적인 감소를 나타내었다. 특히 무처리 시금치 군에 비해 셀레늄 강화 시금치에서 유의적으로 더 높은 과산화지질이 감소하였다. 이러한 결과는 시금치에 함유된 여러 항산화 성분이 효과적으로 활성산소종의 소거에 관여함으로써 산화적 손상을 완화시킨 결과로 보이며, 특히 시금치에 셀레늄의 처리는 항산화능의 상승효과에 기여했으리라 사료된다.

Keywords

References

  1. Bidchol, A.M., Wilfred, A., Abhijna, P., Harish, R.: Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italica. Food Bioprocess Tech.,4, 1137-1143 (2011). https://doi.org/10.1007/s11947-009-0196-9
  2. Smithm, E.B.: The relationship between plasma and plasma and tissue lipid in human atherosclerosis. Adv. Lipid Res.,11, 1-7 (1974).
  3. Boccio, G.D., Lapenna, D., Porreca, E., Pennelli, A., Savini, F., Feliciiani, P., Ricci, G., Cuccurullo, F.: Aortic antioxidant defence mechanism: time-related changes in cholesterol fed rabbits. Atherosclerosis., 81, 127-135 (1990). https://doi.org/10.1016/0021-9150(90)90019-F
  4. Balkan, J., Kanbagli, O., Hatipoglu, A., Kucuk, M., Cevikbas, U., Aykac-Toker, G., Uysal, M. Improving effect of dietary taurine supplementation on the oxidative stress and lipid levels in the plasma, liver and aorta of rabbits fed on a high-cholesterol diet. Biosci. Biotechnol. Biochem., 66, 1755-1758 (2002). https://doi.org/10.1271/bbb.66.1755
  5. Naito, M., Wu, X., Nomura, H., Kodama, M., Kato, Y., Osawa, T.: The protective effects of tetra hydro currumin on oxidative stress in cholesterol-fed rabbits. J. Atheroscler. Thromb., 9, 243-250 (2002). https://doi.org/10.5551/jat.9.243
  6. Trackshel, G., Maines, M. D.: Characterization of glutathione S-transferase in rat kidney. Biochem. J., 253, 127-136 (1988). https://doi.org/10.1042/bj2520127
  7. Simic, M.G.: Mechanisms of inhibition of free radical processein mutagenesis and carcinogenesis. Mutat. Res., 202, 386-399 (1988). https://doi.org/10.1016/0027-5107(88)90199-6
  8. Song, J.C., Park, H.S., Hur, M.H., Baek, N.I.: Examination and isolation of natural anti oxidants from Korean medicinal plants. Korean J. Med. Vrip Sci., 8, 94-101 (2002).
  9. Kim, E.Y., Baik, I.H., Kim, J.H., Kim, S.R., Rhyu, M.R.: Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol., 26, 333-338 (2004).
  10. Lim, S.J.: Retention of ascorbic acid in vegetable as influenced by various blanching methods. Korean J. Soc. Food Sci., 8, 411-419 (1992).
  11. Maeda, N., Hada, T., Murakami-Nakai, C., Kuriyama, I., Ichikawa, H., Fukumory, Y., Hiratsuka. J., Yoshida, H., Sakaguchi, K., Mizushina, Y.: Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions form spinach. J. Nutr. Biochem., 16, 121-128 (2005). https://doi.org/10.1016/j.jnutbio.2004.08.005
  12. Matsubara, K., Matsumoto, H., Mizushinal, Y., Mori, M., Nakajima, N., Fuchigami, M., Yoshida, H., Hada, T.: Inhibitory effect of glycolipids from spinach on in vitamin a and ex vivo angiogenesis. Oncol. Rep., 14, 157-161 (2005).
  13. Park, C.H., Kim, K.H., Tae, M.H., Kim, N.Y., Yook, H.S.: Cooking process for spinach and their effects on antioxidant and antimicrobial activities. Korean J. Food Nutr., 27, 147-155 (2014). https://doi.org/10.9799/ksfan.2014.27.2.147
  14. Ellis D.R., Salt, D.E.: Plants selenium and human health. Cur. Opin. Plant Biol., 6, 273-279 (2003). https://doi.org/10.1016/S1369-5266(03)00030-X
  15. Moriarty, P.M., Picciano, M.F., Beard, J.L., Reddy, C.C.: Classical selenium-dependent glutathione peroxidase expression is decreased secondary to iron deficiency in rats. J. Nutr., 125, 293-301 (1995).
  16. Molan, A.L., Flanagan, J., Wei, W., Moughan, P.J.: Selenium-containing green tea has higher antioxidant and prebioticactivities than regular green tea. Food Chem., 114, 829-835 (2009). https://doi.org/10.1016/j.foodchem.2008.10.028
  17. Schwarz, K., Mertz, W.: Chromium (III) and the glucose tolerance factor. Arch. Biochem. Biophys., 85, 292-295 (1959). https://doi.org/10.1016/0003-9861(59)90479-5
  18. Philip, G.R., Forrest, N.H., George, C.F.: AIN-93 purified diets for laboratory rodents: Final report of the american institute of nutrition AdHoc Writing committee on the reformulation of the AIN76 A rodent diet. J. Nutr., 123, 1939-1951 (1993). https://doi.org/10.1093/jn/123.11.1939
  19. Marklund, S., Marklund, G.: Involvement of the superoxide anion radical in the antioxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. Biochem., 47, 469-474 (1974). https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Lawrence, R.A., Burk, R. F.: Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophy. Res. Common., 71, 952-958 (1976). https://doi.org/10.1016/0006-291X(76)90747-6
  21. Abei, H., Wyss, S.R., Scherz, B., Skvaril, F.: Heterogeneity of erythrocyte catalase II. isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur. J. Biochem., 48, 137-145 (1974). https://doi.org/10.1111/j.1432-1033.1974.tb03751.x
  22. Azzi, A., Montecucco, C., Richter, C.: The use of acetylated ferri cytochrome c for the detection of superoxide radicals produced in biological membrane. Biochem. Biophys. Res. Commun., 65, 597-603 (1975). https://doi.org/10.1016/S0006-291X(75)80188-4
  23. Levin, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel. S., Stadtman, E.R.: Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol., 186, 464-478 (1990). https://doi.org/10.1016/0076-6879(90)86141-H
  24. Yagi, K.: Simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Mes., 15, 212-216 (1976). https://doi.org/10.1016/0006-2944(76)90049-1
  25. Satho, K.: Serum lipid peroxide in cerebrovascular disorders determined by a new metric method. Clin. Chem. Acta., 90, 37-43 (1978). https://doi.org/10.1016/0009-8981(78)90081-5
  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951). https://doi.org/10.1016/S0021-9258(19)52451-6
  27. Sreel, R.G.D., Torrie, J.H.: Principles and procedures of statistics. Mcgrow Hill, New York, NY, USA (1990).
  28. Kang, Y.H., Park, Y.K., Oh, S.R., Moon, K.D.: Studies on the physiological functionality of pine needle and muguort extract. Korean J. Food Sci. Technol., 27, 978-984 (1995).
  29. Lee, M.H., Han, J.S., Kozukue, N., Minamide, T.: Physicochemical characteristics if commercical spinach produced in autumn. J. East. Asian Soc. Dietary Life., 15, 306-314 (2005).
  30. Song, W.Y., Chun, S.S., Choi, J.H.: Antioxidant activities of selenium-treated Spinacia oleracea L. J. Food Hyg. Saf., 33, 510-515 (2018). https://doi.org/10.13103/JFHS.2018.33.6.510
  31. Kielczykowska, M., Kocot, J., Pazdzior, M., Musik, I.: Selenium-a fascinating antioxidant of protective properties. Adv. Clin. Exp. Med., 27, 245-255 (2018). https://doi.org/10.17219/acem/67222
  32. Johansson, L.H., Borg, L.A.: A spectrophotometric method for determination of catalase activity in small tissue sample. Anal. Biochem., 174, 331-336 (1988). https://doi.org/10.1016/0003-2697(88)90554-4
  33. Bus, J.S., Aust, S.D., Gibson, J.E.: Lipid peroxidation a possible mechanism for paraquat toxicity. Res. Common Chem. Pathol. Pharmacol., 11, 31-38 (1975).
  34. Zekovic, Z., Vidovic, S., Mujic, I.: Selenium and zinc content and radical scavenging capacity of edible mushrooms Armilaria mellea and Lycoperdon saccatum. Croat. J. Food Sci. Technol., 2, 16-21 (2010).
  35. Fridovich I.: Superoxide dismutase. An adaptation to paramagnetic gas. J. Biol. Chem., 264, 7761-7764 (1989). https://doi.org/10.1016/S0021-9258(18)83102-7
  36. Nogales, F., Ojeda, M.L., Fenutria, M., Murillo, M.L., Carreras, O.: Role of selenium and glutathione peroxidase on development, growth, and oxidative balance in rat off spring. Soc. Reproduction and Fertility., 146, 659-667 (2013). https://doi.org/10.1530/REP-13-0267
  37. Song, Y.O., Chyun, J. H.: Effect of $\beta$-carotene supplementation on lipid peroxides and antioxidative enzyme activities in hyperlipidemic rats. Korean J. Nutr., 37, 771-779 (2004).
  38. Ko, S.H., Park, J.H., Kim, S.Y., Lee, S.W., Chun, S.S., Park, E.J.: Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Prev. Nutr. Food Sci. 19, 19-26 (2014). https://doi.org/10.3746/pnf.2014.19.1.019