Fig. 1. Probability density function (λ=0.5)
Fig. 2. Laplace Trend Test
Fig. 3. Transition of Mean Square Error(MSE)
Fig. 4. Transition of Intensity Function λ(t)
Fig. 5. Pattern of Mean Value Function m(t)
Fig. 6. Transition of Reliability Ȓ(t)
Table 1. Software Failure Time Data
Table 2. Parameter estimation of the each model and MSE, R2
References
- S. S. Gokhale. & K. S. Trivedi. (1999). A time/structure based software reliability model. Annals of Software Engineering, 8(3), 85-121. https://doi.org/10.1023/A:1018923329647
- A. L. Goel & K. Okumoto. (1978). Time-dependent fault detection rate model for software and other performance measures. IEEE Trans. Reliab., 28(1), 206-211.
- T. J. Yang. (2016). A Software Reliability Cost Mode Based on the Shape Parameter of Lomax Distri bution. The Journal of Korea Institute of Information Electronics and Communication Technology, 9(2), 171-177. https://doi.org/10.17661/jkiiect.2016.9.2.171
- H. C. Kim. (2018). A Study on the Reliability Attributes of the Software Reliability Model Following the Shape Parameter of Minimax Life Distribution. The Journal of Korea Institute of Information Electronics and Communication Technology, 11(4), 325-330. https://doi.org/10.17661/JKIIECT.2018.11.4.325
- T. J. Yang. (2018). A characteristic study on the software development cost model based on the lifetime distribution following the shape parameter of Type-2 Gumbel and Erlang distribution. The Journal of Korea Institute of Information Electronics and Communication Technology, 11(4), 460-466. https://doi.org/10.17661/JKIIECT.2018.11.4.460
- K. H. Rao, R. S. Prasad & R. L. Kantham. (2011). Software Reliability Measuring using Modified Maximum Like-lihood Estimation and SPC. International Journal of Computer Applications, 21(7), 1-5. https://doi.org/10.5120/2527-3440
- H. C. Kim. (2015). The Property of Learning effect based on Delayed Software S-Shaped Reliability Model using Finite NHPP Software Cost Model. Indian Journal of Science and Technology, 8(34), 1-7.
- T. J. Yang. (2018). A Study on Comparative Evaluation of Application of Software Reliability Model Dependent on Various Hazard Functions. The Journal of Korea Institute of Information Electronics and Communication Technology, 11(6), 800-806. https://doi.org/10.17661/JKIIECT.2018.11.6.800
- X. Teng and H. Pham. (2006). A new methodology for predicting software reliability in the random field environments. IEEE Transactions on Reliability, 55(3), 458-468. https://doi.org/10.1109/TR.2006.879611
- K. S. Kim, & H. C. Kim (2014). The Comparative Study for Software Reliability Model Based on Finite and Infinite Failure Property using Rayleigh Distribution. Journal of Digital Convergence, 12(12), 277-284. DOI : 10.14400/jdc.2014.12.12.277
- K. S. Kim & H. C. Kim. (2013). The Assessing Comparative Study for Statiscal Process Control of Software Reliability Model Based on Logarithmic Learning Effects. Journal of Digital Policy & Management, 11(12), 319-326. DOI : 10.14400/jdpm.2013.11.12.319
- H. C. Kim, & K. S. Kim (2015). Finite Time Prediction Capability Comparative Analysis of Software NHPP Reliability Model. Journal of Digital Convergence, 13(12), 143-149. DOI : 10.14400/jdc.2015.13.12.143
- H. J. Jung, & G. H. Han (2019). The Software Reliability Growth Model base on Software Error Datal. Journal of the Korea Convergence Society, 10(3), 59-65. https://doi.org/10.15207/JKCS.2019.10.3.059