DOI QR코드

DOI QR Code

Evaluation of Erythrocyte Morphometric Indices in Juvenile Red Spotted Grouper, Epinephelus akaara under Elevated Water Temperature

  • 투고 : 2019.09.30
  • 심사 : 2019.10.23
  • 발행 : 2019.12.31

초록

Higher thermal exposure can influence the blood cell morphology and count. Hence, based on the previous results (Rahman et al., 2019), the present study evaluated the morphometric indices of erythrocytes and their nucleus under different water temperatures (25℃, 28℃, 31℃, and 34℃) to investigate their use as an indicator of thermal stress in red spotted grouper, Epinephelus akaara. 180 healthy specimens of E. akaara were exposed to four temperature conditions (25℃ as control, 28℃, 31℃, and 34℃) for 42 days, following 2 weeks of acclimation at 25℃. Erythrocyte major axis (EL), erythrocyte minor axis (EW), nucleus major axis (NL), and nucleus minor axis (NW) were examined from the blood smears on each sampling day (i.e., 2, 7, and 42 days of thermal exposure). EL and NL were significantly decreased, whereas EW and NW were increased at higher water temperature (31℃ and 34℃). The major-minor axis proportions of erythrocytes and their nucleus (EL/EW; NL/NW) were decreased with increasing water temperature (31℃ and 34℃). The strong relationships were observed among the morphometric indices of erythrocytes and their nucleus, especially in EL vs. NL and EW vs. NW. This study reveals that elevated water temperature (31℃ and 34℃) can influence the major and minor axis morphometry of erythrocytes and their nucleus in red spotted grouper. These indices may be used as stress indicators to monitor the health status of E. akaara and probably for other fish species.

키워드

참고문헌

  1. Ateeq B, Abulfarah M, Ali MN, Ahmad W (2002) Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor. Mutat Res 518:135-144. https://doi.org/10.1016/S1383-5718(02)00075-X
  2. Barcellos LJG, Kreutz LC, de Souza C, Rodriguez LB, Fioreze I, Quevedo RM, Cericato L, Soso AB, Fagundes M, Conrad J, Lacerda LA, Terra S (2004) Hematological changes in Jundia (Rhamdia quelen) after acute and chronic stress caused by usual aquacultural management, with emphasis on immunosuppressive effects. Aquaculture 237:229-236. https://doi.org/10.1016/j.aquaculture.2004.03.026
  3. Borges A, Scotti LV, Siqueira DR, Zanini R, Do Amaral F, Jurinitz DF, Wassermann GF (2007) Changes in hematological and serum biochemical values in Jundia Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 69:920-926. https://doi.org/10.1016/j.chemosphere.2007.05.068
  4. Cho HC, Kim JE, Kim HB, Baek HJ (2015) Effects of water temperature change on the hematological responses and plasma cortisol levels in growing of red spotted grouper, Epinephelus akaara. Dev Reprod 19:19-24. https://doi.org/10.12717/DR.2015.19.1.019
  5. De M, Ghaffar MA, Noor NM, Cob ZC, Bakar Y, Das SK (2019) Effects of water temperature and diet on blood parameters and stress levels in hybrid grouper (Epinephelusfuscoguttatus female$\times$ E. lanceolatus male) juveniles. Aquac Rep 15:100219. https://doi.org/10.1016/j.aqrep.2019.100219
  6. Fang J, Chen K, Cui HM, Peng X, Li T, Zuo ZC (2014) Morphological and cytochemical studies of peripheral blood cells of Schizothorax prenanti. Anat Histol Embryol 43:386-394. https://doi.org/10.1111/ahe.12089
  7. Fazio F, Filiciotto F, Marafioti S, Di Stefano V, Assenza A, Placenti F, Buscaino G, Piccione G, Mazzola S (2012) Automatic analysis to assess haematological parameters in farmed gilthead sea bream (Sparus aurata Linnaeus, 1758). Mar Freshw Behav Physiol 45:63-73. https://doi.org/10.1080/10236244.2012.677559
  8. Fu KK, Fu C, Qin YL, Bai Y, Fu SJ (2018) The thermal acclimation rate varied among physiological functions and temperature regimes in a common cyprinid fish. Aquaculture 495:393-401. https://doi.org/10.1016/j.aquaculture.2018.06.015
  9. Hardie DC, Hebert PDN (2003) The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46:683-706. https://doi.org/10.1139/g03-040
  10. Howerton R (2001) Best management practices for Hawaiian aquaculture. Center for Tropical and Subtropical Aquaculture, Waimanalo, Publication No. 148.
  11. Islam MA, Uddin MH, Uddin MJ, Shahjahan M (2019) Temperature changes influenced the growth performance and physiological functions of Thai pangas Pangasianodon hypophthalmus. Aquac Rep 13:100179. https://doi.org/10.1016/j.aqrep.2019.100179
  12. Jagoe CH, Welter DA (1995) Quantitative comparisons of the morphology and ultrastructure of erythrocyte nuclei from seven freshwater fish species. Can J Zool 73:1951- 1959. https://doi.org/10.1139/z95-229
  13. Lee JW, Baek HJ (2018) Determination of optimal temperature(s) in juvenile red-spotted grouper Epinephelus akaara (Temminck & Schlegel) based on growth performance and stress responses. Aquac Res 49:3228-3233. https://doi.org/10.1111/are.13782
  14. Lowe-Jinde L, Niimi AJ (1983) Influence of sampling on the interpretation of haematologicalmeasurements of rainbow trout, Salmo gairdneri. Can J Zool 61:396-402. https://doi.org/10.1139/z83-052
  15. Mekkawy IA, Mahmoud UM, Sayed AEH (2011) Effects of 4-nonylphenol on blood cells of the African catfish Clarias gariepinus (Burchell, 1822). Tissue Cell 43:223-229. https://doi.org/10.1016/j.tice.2011.03.006
  16. Metin K, Koca YB, Kiral FK, Koca S, Turkozan O (2008) Blood cell morphology and plasma biochemistry of captive Mauremys caspica (Gmelin, 1774) and Mauremys rivulata (Valenciennes, 1833). Acta Vet Brno 77:163-174. https://doi.org/10.2754/avb200877020163
  17. Morris AV, Roberts CM, Hawkins JP (2000) The threatened status of groupers (Epinephelinae). Biodivers Conserv 9:919-942. https://doi.org/10.1023/A:1008996002822
  18. Motlagh SP, Zarejabad AM, Nasrabadi RG, Ahmadifar E, Molaee M (2012) Haematology, morphology and blood cells characteristics of male and female Siamese fighting fish (Bettasplendens). Comp Clin Pathol 21:15-21. https://doi.org/10.1007/s00580-010-1058-6
  19. Najiah M, Nadirah M, Marina H, Lee SW, Nazaha WH (2008) Quantitative comparisons of erythrocyte morphology in healthy freshwater fish species from Malaysia. Res J Fish Hydrobiol 3:32-35.
  20. Osman AGM, AbouelFadl KY, Abd El Reheem AEM, Mahmoud UM, Kloas W, Moustafa MA (2018) Blood biomarkers in Nile tilapia Oreochromis niloticus niloticus and African catfish Clarias gariepinus to evaluate water quality of the river Nile. J Fish Sci Com 12:1-15.
  21. Rahman MM, Kim HB, Baek HJ (2019) Changes in blood cell morphology and number of red spotted grouper, Epinephelus akaara in response to thermal stress. Dev Reprod 23:139-148. https://doi.org/10.12717/dr.2019.23.2.139
  22. Rowan MW (2007) Use of blood parameters as biomarkers in brown bullheads (Ameiurus nebulosus) from Lake Erie tributaries and Cape Cod ponds. Doctoral dissertation, The Ohio State University.
  23. Ruas CBG, Carvalho CD, de Araujo, HSS, Espindola ELG, Fernandes MN (2008) Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotox Environ Safe 71:86-93. https://doi.org/10.1016/j.ecoenv.2007.08.018
  24. Sadovy Y, Cornish AS (2000) Reef fishes of Hong Kong. Hong Kong University Press, Hong Kong.
  25. Shahjahan M, Uddin MH, Bain V, Haque MM (2018) Increased water temperature altered hemato-biochemical parameters and structure of peripheral erythrocytes in striped catfish Pangasianodon hypophthalmus. Fish Physiol Biochem 44:1309-1318. https://doi.org/10.1007/s10695-018-0522-0
  26. Vazquez GR, Guerrero GA (2007) Characterization of blood cells and hematological parameters in Cichlasoma dimerus (Teleostei, Perciformes). Tissue Cell 39:151-160. https://doi.org/10.1016/j.tice.2007.02.004
  27. Walia GK, Handa D, Kaur H, Kalotra R (2013) Erythrocyte abnormalities in a freshwater fish, Labeo rohita exposed to tannery industry effluent. Int J Pharm Biol Sci 3:287-295.
  28. Zexia G, Weimin W, Yi Y, Abbas K, Dapeng L, Guiwei Z, Diana JS (2007) Morphological studies of peripheral blood cells of the Chinese sturgeon, Acipenser sinensis. Fish Physiol Biochem 33:213-222. https://doi.org/10.1007/s10695-007-9133-x