DOI QR코드

DOI QR Code

효율적인 구조로봇 개발을 위한 통합 M&S 프레임워크

Modeling & Simulation Framework for the Efficient Development of a Rescue Robot

  • 투고 : 2019.04.15
  • 심사 : 2019.06.28
  • 발행 : 2019.06.30

초록

본 연구에서는 전장이나 재난 환경과 같은 인간이 투입되기 힘든 환경에서 인간을 대신하여 부상자 구조 및 위험물 처리 목적으로 개발된 구조로봇의 효율적 개발을 위한 통합 M&S 프레임워크를 소개한다. 개발된 통합 M&S 프레임워크는 계층화, 모듈화된 통합운동제어 소프트웨어의 구조에 기인하여 통합운동제어 소프트웨어 구조는 동일하게 이용하며 로봇 플랫폼을 시뮬레이션 프로그램으로 대체하여 SILS(Software-in-the-Loop Simulation) 개념의 M&S를 가능하게 하였다. 이를 활용하여 로봇 설계 및 로봇 제어 기술의 성능 검증 등의 개발 전 과정을 효율적으로 수행하였고, 비정형 환경에서의 원격 운용성 향상도 가져왔다. 통합 M&S 프레임워크의 적극적인 활용을 통해 구조로봇의 성공적인 개발 및 성능 확인을 완료하였으며, 구조로봇의 주요 기술 중 하나인 가변형상 제어를 통한 주행 안정화 기술 개발 과정에 적용된 통합 M&S 프레임워크의 사례를 통해 효용성을 확인한다.

This paper introduces an integrated Modeling & Simulation framework for the efficient development of the rescue robot which rescues a wounded patients or soldiers and disposes a dangerous objects or explosive materials in the battlefields and disastrous environments. An integrated M&S(Modeling & Simulation) framework would have enabled us to perform the dynamic simulation program GAZEBO based Software-in-the-Loop Simulation(SILS) which is to replacing the robot platform hardware with a simulation software. An integrated M&S framework would help us to perform designing robot and performance validation of robot control results more efficiently. Furthermore, Tele-operation performance in the unstructured environments could be improved. We review a case study of applying an integrated M&S framework tool in validating performance of mobility stabilization control, one of the most important control strategy in the rescue robot.

키워드

SMROBX_2019_v28n2_149_f0001.png 이미지

Fig. 1. Rescue robot (HURCULES)

SMROBX_2019_v28n2_149_f0002.png 이미지

Fig. 2. Configurations of a rescue robot (HURCULES)

SMROBX_2019_v28n2_149_f0003.png 이미지

Fig. 3. Software architecture of a rescue robot

SMROBX_2019_v28n2_149_f0004.png 이미지

Fig. 4. Integrated M&S framework based robot software architecture

SMROBX_2019_v28n2_149_f0005.png 이미지

Fig. 5. Overview of integrated mobility stabilization control block diagram

SMROBX_2019_v28n2_149_f0006.png 이미지

Fig. 6. GAZEBO simulation environments

SMROBX_2019_v28n2_149_f0007.png 이미지

Fig. 7. Test environment for mobility stabilization control (30% Longitudinal slope)

SMROBX_2019_v28n2_149_f0008.png 이미지

Fig. 8. Simulation results of the mobility stabilization control

SMROBX_2019_v28n2_149_f0009.png 이미지

Fig. 9. Test results of the mobility stabilization control

참고문헌

  1. G. Pratee and J. Manzo, "The DARPA robotics challenge", IEEE Robot. & Autom. Mag., 20 (2) pp. 10-12, 2013
  2. Lim, Jeongsoo, et al. "Robotic software system for the disaster circumstances: System of team kaist in the darpa robotics challenge finals." 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). IEEE, 2015.
  3. Lim, Jeongsoo, et al. "Robot system of DRCHUBO+ and control strategy of team KAIST in DARPA robotics challenge finals." Journal of Field Robotics 34.4: 802-829, 2017 https://doi.org/10.1002/rob.21673
  4. Johnson, Matthew, et al. "Team IHMC's lessons learned from the DARPA robotics challenge trials." Journal of Field Robotics 32.2 : 192-208, 2015. https://doi.org/10.1002/rob.21571
  5. Feng, Siyuan, et al. "Optimization-based full body control for the darpa robotics challenge." Journal of Field Robotics 32.2 : 293-312, 2015. https://doi.org/10.1002/rob.21559
  6. Hong, Seongil, et al. "Realization of the Fast Real-Time Hierarchical Inverse Kinematics for Dexterous Full Body Manipulation." 2018 18th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2018.
  7. Choi, B., Lee, W., Park, G., Lee, Y., Min, J., & Hong, S. "Development and control of a military rescue robot for casualty extraction task", Journal of Field Robotics, 2018
  8. Hong, S., et al., "Dynamics based motion optimization and operational space control with an experimental rescue robot, HUBO T-100", In 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 773-778, 2015.
  9. Lee, W., Lee, Y., Park, G., Hong, S., & Kang, Y., "A whole-body rescue motion control with taskpriority strategy for a rescue robot. Autonomous Robots", 41(1), pp. 243-258, 2017 https://doi.org/10.1007/s10514-016-9562-4
  10. B. Siciliano, "A closed-loop inverse kinematics scheme for on-line joint based robot control", Robotica, 8 (3) pp. 231-243, 1990 https://doi.org/10.1017/S0263574700000096
  11. 홍성일, et al. "고가반 하중의 원격 제어용 구조로봇 개발." 제어로봇시스템학회 논문지 23.12 : 1077-1085, 2017
  12. 정병진, et al. "구호로봇용 연성 매니퓰레이터를 위한 조인트 제어 및충돌감지 알고리즘." 로봇학회논문지 13.3, pp. 157-163, 2018. https://doi.org/10.7746/jkros.2018.13.3.157
  13. Y. Lee, W. Lee, B. Choi, G. Park and Y. Park, "Reliable software architecture design with Ether CAT for a rescue robot", Proc. of IEEE Int. Symp. on Robotics & Intel. Sensors (IRIS), Tokyo, Japan 1-6, 2016
  14. Choi, B., Park, G., Lee, Y, "Practical control of a rescue robot while maneuvering on uneven terrain", Journal of Mechanical Science and Technology, 32(5), pp.2021-2028, 2016. https://doi.org/10.1007/s12206-018-0410-7
  15. Alipour, Khalil, and S. Ali A. Moosavian. "Dynamically stable motion planning of wheeled robots for heavy object manipulation." Advanced Robotics 29.8, pp.545-560, 2015. https://doi.org/10.1080/01691864.2014.992956
  16. Ding, Jienan, et al. "Giving patients a lift-the robotic nursing assistant (RoNA)." 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA). IEEE, 2014.
  17. Pereira, F.L., et al. "Mission planning and specification in the Neptus framework.", Proceedings 2006 IEEE International Conference on Robotics and Automation, pp.3220-3225, 2006.
  18. Benjamin, Michael R., et al. "Nested autonomy for unmanned marine vehicles with MOOS_lvP., Journal of Field Robotics 27(6), pp.834-875, 2010. https://doi.org/10.1002/rob.20370