DOI QR코드

DOI QR Code

Combined Toxicity in the Brackish Water Flea Diaphanosoma celebensis Exposed to Benzo[a]pyrene and Mercury

벤조피렌과 수은에 대한 기수산 물벼룩 Diaphanosoma celebensis의 복합 독성 영향

  • Yoo, Je-Won (Department of Life Science, College of Natural Sciences, Sangmyung University) ;
  • Cho, Hayoung (Department of Life Science, College of Natural Sciences, Sangmyung University) ;
  • Jeong, Jeon Min (Department of Life Science, College of Natural Sciences, Sangmyung University) ;
  • Lee, Young-Mi (Department of Life Science, College of Natural Sciences, Sangmyung University)
  • 유제원 (상명대학교 자연과학대학 생명과학과) ;
  • 조하영 (상명대학교 자연과학대학 생명과학과) ;
  • 전민정 (상명대학교 자연과학대학 생명과학과) ;
  • 이영미 (상명대학교 자연과학대학 생명과학과)
  • Received : 2019.09.20
  • Accepted : 2019.12.04
  • Published : 2019.12.13

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are persistent and commonly detected in marine ecosystem. They coexist with a various contaminants including heavy metals in real environment, but most studies have been still focused on single effects of these contaminants to aquatic organisms. In this study, the single and combined effects of benzy[a]pyrene (B[a]P) and HgCl2 were investigated in the brackish water flea, Diaphanosoma celebensis. For combined effect study, three mixtures A (3:7), B (5:5), and C (7:3) of benzy[a]pyrene (B[a]P) and HgCl2 were determined by 48 h - LC50 values of single exposure. Combined effects of both chemicals were estimated by concentration addition (CA) model and independent action (IA) model. As results, 48 h - LC50 values of benzy[a]pyrene (B[a]P) and HgCl2 was 25.75 ㎍ l-1 and 3.6 ㎍ l-1, respectively. TU values of mixture A, B, and C were 1.06, 0.83, and 0.96, respectively, indicating additive effects of mixtures using CA model. This study will be helpful as basic data for understanding the combined effects of contaminants in marine environment.

다환방향족탄화수소류(PAHs)는 해양 환경에 오랜 기간 잔류하며 해양 생태계에 유해한 보편적인 환경 오염 물질이다. PAH류는 대부분 해양 환경에서 금속을 비롯한 다양한 오염 물질과 복합적으로 존재하지만 혼합 오염 물질이 개체에 미치는 영향에 대한 연구는 부족하다. 본 연구는 HgCl2와 Benzo[a]pyrene (B[a]P)이 해양 생물에 미치는 영향을 개체 수준에서 평가하기 위하여 기수산 물벼룩(Diaphanosoma celebensis)을 이용하여 단일 및 혼합 급성 독성 시험을 진행하였다. 혼합 독성 평가에 사용한 혼합물의 농도는 단일 독성 시험을 통하여 얻은 각각의 LC50을 기준으로 3:7 (Mixture A), 5:5 (Mixture B), 7:3 (Mixture C)의 비율로 혼합하여 결정하였다. 실험 결과 B[a]P와 HgCl2의 48 h - LC50은 각각 25.75 ㎍ l-1와 3.6 ㎍ l-1로 나타났다. 혼합 독성 평가 결과 Mixture A, B, C에서 TU는 각각 1.06, 0.83, 0.96로 나타났다. 이는 Mixture A, B, C가 CA 모델에 따라 작용함을 보여주며, HgCl2와 B[a]P의 상호작용을 연구하기 위해 CA 모델을 사용하는 것이 적합할 것으로 생각된다. 본 연구는 금속과 PAH류의 혼합 독성 평가를 위한 기초 자료가 될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 상명대학교 대학혁신지원사업 SM-URP 프로그램(2019-1)의 지원을 받아 수행하였음.

References

  1. Abbott LC, Moussa EAM, Carl TL, Cortez D, Clayton HL, Holland CS, Lindsay K, Hassan SAH. 2017. Early Exposure to Mercuric Chloride or Methylmercury Alters Zebrafish Embryo (Danio rerio) Development. Poult Fish Wildl Sci 05.
  2. Abdel-Shafy HI, Mansour MSM. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J Pet 25: 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011
  3. Ahn JH, Grant SB, Surbeck CQ, DiGiacomo PM, Nezlin NP, Jiang S. 2005. Coastal Water Quality Impact of Stormwater Runoff from an Urban Watershed in Southern California. Environ Sci Technol 39: 5940-5953. https://doi.org/10.1021/es0501464
  4. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M. 2013. Simplifying complexity: mixture toxicity assessment in the last 20 years. Environ Toxicol Chem 32: 1685-1687. https://doi.org/10.1002/etc.2294
  5. Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH. 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: Comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environ Toxicol Chem 18: 2275-2282.
  6. Backhaus T, Faust M. 2012. Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46: 2564-2573. https://doi.org/10.1021/es2034125
  7. Backhaus T, Porsbring T, Arrhenius A, Brosche S, Johansson P, Blanck H. 2011. Single-substance and mixture toxicity of five pharmaceuticals and personal care products to marine periphyton communities. Environ Toxicol Chem 30: 2030-2040. https://doi.org/10.1002/etc.586
  8. Badr FM, El-Habit O. 2018. Heavy Metal Toxicity Affecting Fertility and Reproduction of Males. Bioenvironmental Issues Affecting Men's Reproductive and Sexual Health 293-304.
  9. Banni M, Bouraoui Z, Clerandeau C, Narbonne JF, Boussetta H. 2009. Mixture toxicity assessment of cadmium and benzo[a]-pyrene in the sea worm Hediste diversicolor. Chemosphere 77: 902-906. https://doi.org/10.1016/j.chemosphere.2009.08.041
  10. Boysen G, Hecht SS. 2003. Analysis of DNA and protein adducts of benzo[a]pyrene in human tissues using structure-specific methods. Mutat Res 543: 17-30. https://doi.org/10.1016/S1383-5742(02)00068-6
  11. Broderius SJ, Kahl MD, Hoglund MD. 1995. Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. Environ Toxicol Chem 14: 1591-1605. https://doi.org/10.1002/etc.5620140920
  12. Das SK, Patel B, Patri M. 2016. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats. J Toxicol 2016: 1-7.
  13. DeLorenzo ME, Serrano L. 2003. Individual and mixture toxicity of three pesticides; atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta. J Environ Sci Health B 38: 529-538. https://doi.org/10.1081/PFC-120023511
  14. Deruytter D, Baert JM, Nevejan N, De Schamphelaere KAC, Janssen CR. 2017. Mixture toxicity in the marine environment: Model development and evidence for synergism at environmental concentrations. Environ Toxicol Chem 36: 3471-3479. https://doi.org/10.1002/etc.3913
  15. Fleeger JW, Gust KA, Marlborough SJ, Tita G. 2007. Mixtures of metals and polynuclear aromatic hydrocarbons elicit complex, nonadditive toxicological interactions in meiobenthic copepods. Environ Toxicol Chem 26: 1677-1685. https://doi.org/10.1897/06-397R.1
  16. Flora SJ, Mittal M, Mehta A. 2008. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128: 501-523.
  17. Freitas EC, Rocha O. 2011. Acute Toxicity Tests with the Tropical Cladoceran Pseudosida ramosa: The Importance of Using Native Species as Test Organisms. Arch Environ Contam Toxicol 60: 241-249. https://doi.org/10.1007/s00244-010-9541-2
  18. Gauthier PT, Norwood WP, Prepas EE, Pyle GG. 2014. Metal-PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than-additive outcomes. Aquat Toxicol 154: 253-269. https://doi.org/10.1016/j.aquatox.2014.05.026
  19. Gauthier PT, Norwood WP, Prepas EE, Pyle GG. 2015. Metal-Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 2. Metal Accumulation and Oxidative Stress as Interactive Co-toxic Mechanisms. Environ Sci Technol 49: 11780-11788. https://doi.org/10.1021/acs.est.5b03233
  20. Gust KA. 2006. Joint Toxicity of Cadmium and Phenanthrene in the Freshwater Amphipod Hyalella azteca. Arch Environ Contam Toxicol 50: 7-13. https://doi.org/10.1007/s00244-004-4163-1
  21. Gust KA, Fleeger JW. 2005. Exposure-related effects on Cd bioaccumulation explain toxicity of Cd-phenanthrene mixtures in Hyalella azteca. Environ Toxicol Chem 24: 2918-2926. https://doi.org/10.1897/05-005R.1
  22. Gust KA, Fleeger JW. 2006. Exposure to Cadmium-Phenanthrene Mixtures Elicits Complex Toxic Responses in the Freshwater Tubificid Oligochaete, Ilyodrilus templetoni. Arch Environ Contam Toxicol 51: 54-60. https://doi.org/10.1007/s00244-005-1075-7
  23. Ikenaka Y, Sakamoto M, Nagata T, Takahashi H, Miyabara Y, Hanazato T, Ishizuka M, Isobe T, Kim JW, Chang K-H. 2013. Effects of polycyclic aromatic hydrocarbons (PAHs) on an aquatic ecosystem: acute toxicity and community-level toxic impact tests of benzo[a]pyrene using lake zooplankton community. J Toxicol Sci 38: 131-136. https://doi.org/10.2131/jts.38.131
  24. Jemec A, Horvat P, Kunej U, Bele M, Krzan A. 2016. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ Pollut 219: 201-209. https://doi.org/10.1016/j.envpol.2016.10.037
  25. Kim B-M, Kang S, Kim R-O, Jung J-H, Lee K-W, Rhee J-S, Lee Y-M. 2018. De novo transcriptome assembly of brackish water flea Diaphanosoma celebensis based on short-term cadmium and benzo[a]pyrene exposure experiments. Hereditas 155.
  26. Kim H, Yim B, Bae C, Lee Y-M. 2017a. Acute toxicity and antioxidant responses in the water flea Daphnia magna to xenobiotics (cadmium, lead, mercury, bisphenol A, and 4-nonylphenol). Toxicol Environ Health Sci 9: 41-49. https://doi.org/10.1007/s13530-017-0302-8
  27. Kim H, Kim J-S, Lee Y-M. 2017b. Changes in activity and transcription of antioxidant enzymes and heat shock protein 90 in the water flea, Daphnia magna - exposed to mercury. Toxicol Environ Health Sci 9: 300-308. https://doi.org/10.1007/s13530-017-0335-z
  28. Korovchinsky NM. 1989. Redescription of Diaphanosoma celebensis Stingelin, 1900 (Crustacea, Cladocera). Hydrobiologia 184: 7-22. https://doi.org/10.1007/BF00014297
  29. Kortenkamp A, Faust M. 2018. Regulate to reduce chemical mixture risk. Science 361: 224-226. https://doi.org/10.1126/science.aat9219
  30. Kortenkamp A, Backhaus T, Faust M. 2009. State of the art report on mixture toxicity. European Commission.
  31. Lal H, Misra V, Viswanathan PN, Krishna Murti CR. 1984. The water flea (Daphnia magna) as a sensitive indicator for the assessment of toxicity of synthetic detergents. Ecotoxicol Environ Saf 8: 447-450. https://doi.org/10.1016/0147-6513(84)90065-4
  32. Marcial HS, Hagiwara A. 2007. Multigenerational effects of 17 beta-estradiol and nonylphenol on euryhaline cladoceran Diaphanosoma celebensis. Fisheries Sci 73: 324-330. https://doi.org/10.1111/j.1444-2906.2007.01338.x
  33. Meng Q, Li X, Feng Q, Cao Z. 2008. The Acute and Chronic Toxicity of Five Heavy Metals on the Daphnia Magna. In: Bioinformatics and biomedical engineering, 2008, ICBBE 2008. The 2nd international conference, 4555-4558.
  34. Mercurio P, Eaglesham G, Parks S, Kenway M, Beltran V, Flores F, Mueller JF, Negri AP. 2018. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms. Sci Rep 8.
  35. Naddafi K, Zare MR, Nazmara S. 2011. Investigating potential toxicity of phenanthrene adsorbed to nano-ZnO using Daphnia magna. Toxicol Environ Chem 93: 729-737. https://doi.org/10.1080/02772248.2011.552505
  36. Nesci S, Trombetti F, Pirini M, Ventrella V, Pagliarani A. 2016. Mercury and protein thiols: Stimulation of mitochondrial F1FO-ATPase and inhibition of respiration. Chem Biol Interact 260: 42-49. https://doi.org/10.1016/j.cbi.2016.10.018
  37. Okamoto A, Yamamuro M, Tatarazako N. 2014. Acute toxicity of 50 metals to Daphnia magna. J Appl Toxicol 35: 824-830.
  38. Palanikumar L, Kumaraguru AK, Ramakritinan CM, Anand M. 2012. Biochemical response of anthracene and benzo [a] pyrene in milkfish Chanos chanos. Ecotoxicol Environ Saf 75: 187-197. https://doi.org/10.1016/j.ecoenv.2011.08.028
  39. Puckowski A, Stolte S, Wagil M, Markiewicz M, Lukaszewicz P, Stepnowski P, Bialk-Bielinska A. 2017. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna. Int J Hyg Environ Health 220: 575-582. https://doi.org/10.1016/j.ijheh.2017.01.011
  40. Puga S, Pereira P, Pinto-Ribeiro F, O'Driscoll NJ, Mann E, Barata M, Pousao-Ferreira P, Canario J, Almeida A, Pacheco M. 2016. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment. Aquat Toxicol 180: 320-333. https://doi.org/10.1016/j.aquatox.2016.10.014
  41. Rice KM, Walker EM, Wu M, Gillette C, Blough ER. 2014. Environmental Mercury and Its Toxic Effects. J Prev Med Public Health 47: 74-83. https://doi.org/10.3961/jpmph.2014.47.2.74
  42. Wu Y, Wang CG, Wang Y, Zhao Y, Chen Y, Zuo Z. 2007. Antioxidant responses to benzo[a]pyrene, tributyltin and their mixture in the spleen of Sebasticus marmoratus. J Environ Sci 19: 1129-1135. https://doi.org/10.1016/S1001-0742(07)60184-3
  43. Xie F, Lampi MA, Dixon DG, Greenberg BM. 2007. Assessment of the toxicity of mixtures of nickel or cadmium with 9,10-phenanthrenequinone to Daphnia magna: impact of a reactive oxygen-mediated mechanism with different redox-active metals. Environ Toxicol Chem 26: 1425-1432. https://doi.org/10.1897/06-224R.1
  44. Xie F, Koziar SA, Lampi MA, Dixon DG, Warren NP, Borgmann U, Huang XD, Greenberg BM. 2006. Assessment of the toxicity of mixtures of copper, 9,10-phenanthrenequinone, and phenanthrene to Daphnia magna: evidence for a reactive oxygen mechanism. Environ Toxicol Chem 25: 613-622. https://doi.org/10.1897/05-256R.1