DOI QR코드

DOI QR Code

물-에너지-식량 넥서스 분석을 위한 시설재배지의 기준작물증발산량과 난방 에너지 부하 관계 분석

Relationship Analysis of Reference Evapotranspiration and Heating Load for Water-Energy-Food Nexus in Greenhouse

  • Kim, Kwihoon (Department of Rural Systems Engineering, Seoul National University) ;
  • Yoon, Pureun (Department of Rural Systems Engineering, Seoul National University) ;
  • Lee, Yoonhee (Department of Rural Systems Engineering, Seoul National University) ;
  • Lee, Sang-Hyun (Research Institute for Humanity and Nature) ;
  • Hur, Seung-Oh (Division of Climate Change and Agroecology, Department of Agricultural Environment, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA)) ;
  • Choi, Jin-Yong (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Institute of Green Bio Science and Technology, Seoul National University)
  • 투고 : 2019.05.10
  • 심사 : 2019.05.27
  • 발행 : 2019.07.31

초록

Increasing crop production with the same amount of resources is essential for enhancing the economy in agriculture. The first prerequisite is to understand relationships between the resources. The concept of WEF (Water-Energy-Food) nexus analysis was first introduced in 2011, which helps to interpret inter-linkages among the resources and stakeholders. The objective of this study was to analyze energy-water nexus in greenhouse cultivation by estimating reference evapotranspiration and heating load. For the estimation, this study used the physical model to simulate the inside temperature of the agricultural greenhouse using heating, solar radiation, ventilated and transferred heat losses as input variables. For estimating reference evapotranspiration and heating load, Penman-Monteith equation and seasonal heating load equation with HDH (Heating Degree-Hour) was applied. For calibration and validation of simulated inside temperature, used were hourly data observed from 2011 to 2012 in multi-span greenhouse. Results of the simulation were evaluated using $R^2$, MAE and RMSE, which showed 0.75, 2.22, 3.08 for calibration and 0.71, 2.39, 3.35 for validation respectively. When minimum setting temperature was $12^{\circ}C$ from 2013 to 2017, mean values of evapotranspiration and heating load were 687 mm/year and 2,147 GJ/year. For $18^{\circ}C$, Mean values of evapotranspiration and heating load were 707 mm/year and 5,616 GJ/year. From the estimation, the relationship between water and heat energy was estimated as 1.0~2.6 GJ/ton. Though additional calibrations with different types of greenhouses are necessary, the results of this study imply that they are applicable when evaluating resource relationship in the greenhouse cultivation complex.

키워드

NGHHCI_2019_v61n4_23_f0001.png 이미지

Fig. 1 Diagram of the energy-water-food nexus in greenhouse cultivation

NGHHCI_2019_v61n4_23_f0002.png 이미지

Fig. 2 Location map of experimental site and weather stations (Hong et al., 2013)

NGHHCI_2019_v61n4_23_f0003.png 이미지

Fig. 3 Scatter plots of the observed and simulated temperature for calibration in 2011

NGHHCI_2019_v61n4_23_f0004.png 이미지

Fig. 4 Scatter plots of the observed and simulated temperature for validation in 2012

NGHHCI_2019_v61n4_23_f0005.png 이미지

Fig. 5 Comparison of observed and simulated inside temperature for model calibration in 2011

NGHHCI_2019_v61n4_23_f0006.png 이미지

Fig. 6 Comparison of observed and simulated inside temperature for model validation in 2012

NGHHCI_2019_v61n4_23_f0007.png 이미지

Fig. 7 Sum of reference evapotranspiration and seasonal heat load from 2013 to 2017 depending on the minimum temperature settings (12, 14, 16, 18℃)

NGHHCI_2019_v61n4_23_f0008.png 이미지

Fig. 8 Comparison of yearly reference evapotranspiration on different temperature settings

NGHHCI_2019_v61n4_23_f0009.png 이미지

Fig. 9 Comparison of yearly seasonal heat load on different temperature settings

Table 1 Comparison of parameter specifications between van Henten (1994) and this study

NGHHCI_2019_v61n4_23_t0001.png 이미지

Table 2 Adjust coefficient (kc) depending on the duration of sunshine

NGHHCI_2019_v61n4_23_t0002.png 이미지

Table 3 Specification of the greenhouse and AWS in the experimental site

NGHHCI_2019_v61n4_23_t0003.png 이미지

Table 4 Evaluation results of temperature simulation model calibration (2011) and validation (2012)

NGHHCI_2019_v61n4_23_t0004.png 이미지

Table 5 Yearly reference evapotranspiration (mm/year) and increment rate on different temperature settings

NGHHCI_2019_v61n4_23_t0005.png 이미지

Table 6 Yearly seasonal heat load (GJ/year) and increment rate on different temperature settings

NGHHCI_2019_v61n4_23_t0006.png 이미지

Table 7 Average resource demands and resource relationship on different setting temperatures

NGHHCI_2019_v61n4_23_t0007.png 이미지

참고문헌

  1. Bot, G. P. A., 1994. Greenhouse climate: from physical process to a dynamic model. Ph.D. diss., Wagenigen, the Netherlands: Wageningen Agricultural University.
  2. Chen, L., S. Du, Y. He, M. Liang, and D. Xu, 2018. Robust model predictive control for greenhouse temperature based on particle swarm optimization. Information Processing in Agriculture (2018). doi:10.1016/j.inpa.2018.04.003.
  3. Choi, J., 2017. Sustainable resource management with Water-Energy-Food Nexus. World Agriculture 206: 3-19 (in Korean).
  4. Daher, B. T., and R. H. Mohtar, 2015. WEF Nexus Tool 2.0; guiding integrative resource planning and decisionmaking. Water International 40(5-6): 748-771. doi:10.1080/02508060.2015.1074148.
  5. Daher, B., S. Lee, V. Kaushik, J. Blake, M. H. Askariyeh, H. Shafiezadeh, S. Zamaripa, and R. H. Mohtar, 2019. Towards bridging the water gap in Texas: A water-energyfood nexus approach. Science of the Total Environment 647: 449-463. doi:10.1016/j.scitotenv.2018.07.398.
  6. Degirmencioglu, A., R. H. Mohtar, B. T. Daher, G. Ozgunaltay-Ertugrul, and O. Ertugrul, 2019. Assessing the sustainability of crop production in the Gediz basin, Turkey: A water, energy and food nexus approach. Fresenius Environmental Bulletin 28(4): 2511-2522.
  7. Fernandez, M. D., S. Bonachela, F. Orgaz, R. Thompson, J. C. Lopez, M. R. Granados, M. Gallardo, and E. Fereres, 2010. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrigation Science 28: 497-509. doi:10.1007/s00271-010-0210-z.
  8. Ha, T., I. Lee, K. Kwon, and S. Hong, 2015. Computation and field experiment validation of greenhouse energy load using BES (Building Energy Simulation) model. International Journal of Agricultural and Biological Engineering 8(6): 116-127. doi:10.3965/j.ijabe.20150806.2037.
  9. Hong, E. M., J. Choi, W. H. Nam, M. Kang, and J. Jang, 2014. Soil moisture extraction characteristics of Cucumber crop in protected cultivation. Journal of the Korean Society of Agricultural Engineers 56(2): 37-46. doi:10.5389/KSAE.2014.56.2.037 (in Korean).
  10. Hong, S. W., A. K. Moon, S. Li, and I. B. Lee, 2015. Data-based model approach to predict internal air temperature of greenhouse. Journal of the Korean Society of Agricultural Engineers 57(3): 9-19. doi:10.5389/KSAE.2015.57.3.009 (in Korean).
  11. Irabien, A., and R. C. Darton, 2016. Energy-water-food nexus in the Spanish greenhouse tomato production. Clean Technol Environ Policy 18: 1307-1316. doi:10.1007s/10098-015-1076-9. https://doi.org/10.1007/s10098-015-1076-9
  12. Lee, S., R. H. Mohtar, and S. Yoo, 2019. Assessment of food trade impacts on water, food and land security in the MENA region. Hydrology and Earth System Sciences 23: 557-572. doi:10.5194/hess-23-557-2019.
  13. Lee, T. S., G. C. Kang, Y. Paek, J. P. Moon, S. S. Oh, and J. K. Kwon, 2016. Analysis of temperature and humidity distributions according to arrangements of air circulation fans in single-span Tomato greenhouse. Protected Horticulture and Plant Factory 25(4): 277-282. doi:10.12791/KSBEC.2016.25.4.277.
  14. MAFRA (Ministry of Agriculture, Food and Rural Affairs), 2018. Agriculture, food and rural affairs statistics yearbook, 40-44; 88-89. Sejong, Korea (in Korean).
  15. Nam, S., and H. Shin, 2015. Development of a method to estimate the seasonal heating load for plastic greenhouse. Journal of the Korean Society of Agricultural Engineers 57(5): 37-42. doi:10.5389/KSAE.2015.57.5.037 (in Korean).
  16. NAAS (National Academy of Agricultural Science), 2015. Standard for designing greenhouse environment, 71-84. Jeollabuk-do, Korea (in Korean).
  17. Namany, S., T. Al-Ansary, and R. Govindan, 2019. Sustainable energy, water and food nexus systems: a focused review of decision making tools for efficient resource management and governance. Journal of Cleaner Production 225: 610-626. doi:10.1016/j.jclepro.2019.03.304.
  18. RDA (Rural Development Administration), 2018. 2017 Income analysis of agro and livestock products, 69-125. Jeollabuk-do, Korea (in Korean).
  19. Shin, H., and S. Nam, 2016. Experimental study on the characteristics of ground heat exchange in heating greenhouse. Protected Horticulture and Plant Factory 25(3): 218-223. doi:10.12791/KSBEC.2016.25.3.218 (in Korean).
  20. Udink ten Cate, A. J., G. P. A. Bot, and J. J. van Dixhoorn, 1978. Computer control of greenhouse climates. Acta Horticulturae 87: 265-272. doi:10.17660/ActaHortic.1978.87.28.
  21. Udink ten Cate, A. J., 1983. Modelling and (adaptive) control of greenhouse climates. Ph.D. diss., Wagenigen, the Netherlands: Wageningen Agricultural University.
  22. van Beveren, P. J. M., J. Bontesma, G. van Straten, and E. J. van Henten, 2015. Optimal control of greenhouse climate using minimal energy and grower defined bounds. Applied Energy 159: 509-519. doi:10.1016/j.apenergy.2015.09.012.
  23. van Henten, E. J., 1994. Greenhouse climate management: an optimal control approach. Ph.D. diss., Wagenigen, The Netherlands: Wageningen Agricultural University.
  24. van Henten, E. J., and J. Bontsema, 2009. Time-scale decomposition of an optimal control problem in greenhouse climate management. Control Engineering Practice 17: 88-96. doi:10.1016/j.conengprac.2008.05.008.
  25. Yoon, P. R., and J. Choi, 2018. Assessment of reference evapotranspiration equations for missing and estimated weather data. Journal of Korean Society of Agricultural Engineers 60(3): 15-25. doi:10.5389/KSAE.2018.60.3.015 (in Korean).