Fig. 1 Diagram of the energy-water-food nexus in greenhouse cultivation
Fig. 2 Location map of experimental site and weather stations (Hong et al., 2013)
Fig. 3 Scatter plots of the observed and simulated temperature for calibration in 2011
Fig. 4 Scatter plots of the observed and simulated temperature for validation in 2012
Fig. 5 Comparison of observed and simulated inside temperature for model calibration in 2011
Fig. 6 Comparison of observed and simulated inside temperature for model validation in 2012
Fig. 7 Sum of reference evapotranspiration and seasonal heat load from 2013 to 2017 depending on the minimum temperature settings (12, 14, 16, 18℃)
Fig. 8 Comparison of yearly reference evapotranspiration on different temperature settings
Fig. 9 Comparison of yearly seasonal heat load on different temperature settings
Table 1 Comparison of parameter specifications between van Henten (1994) and this study
Table 2 Adjust coefficient (kc) depending on the duration of sunshine
Table 3 Specification of the greenhouse and AWS in the experimental site
Table 4 Evaluation results of temperature simulation model calibration (2011) and validation (2012)
Table 5 Yearly reference evapotranspiration (mm/year) and increment rate on different temperature settings
Table 6 Yearly seasonal heat load (GJ/year) and increment rate on different temperature settings
Table 7 Average resource demands and resource relationship on different setting temperatures
참고문헌
- Bot, G. P. A., 1994. Greenhouse climate: from physical process to a dynamic model. Ph.D. diss., Wagenigen, the Netherlands: Wageningen Agricultural University.
- Chen, L., S. Du, Y. He, M. Liang, and D. Xu, 2018. Robust model predictive control for greenhouse temperature based on particle swarm optimization. Information Processing in Agriculture (2018). doi:10.1016/j.inpa.2018.04.003.
- Choi, J., 2017. Sustainable resource management with Water-Energy-Food Nexus. World Agriculture 206: 3-19 (in Korean).
- Daher, B. T., and R. H. Mohtar, 2015. WEF Nexus Tool 2.0; guiding integrative resource planning and decisionmaking. Water International 40(5-6): 748-771. doi:10.1080/02508060.2015.1074148.
- Daher, B., S. Lee, V. Kaushik, J. Blake, M. H. Askariyeh, H. Shafiezadeh, S. Zamaripa, and R. H. Mohtar, 2019. Towards bridging the water gap in Texas: A water-energyfood nexus approach. Science of the Total Environment 647: 449-463. doi:10.1016/j.scitotenv.2018.07.398.
- Degirmencioglu, A., R. H. Mohtar, B. T. Daher, G. Ozgunaltay-Ertugrul, and O. Ertugrul, 2019. Assessing the sustainability of crop production in the Gediz basin, Turkey: A water, energy and food nexus approach. Fresenius Environmental Bulletin 28(4): 2511-2522.
- Fernandez, M. D., S. Bonachela, F. Orgaz, R. Thompson, J. C. Lopez, M. R. Granados, M. Gallardo, and E. Fereres, 2010. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrigation Science 28: 497-509. doi:10.1007/s00271-010-0210-z.
- Ha, T., I. Lee, K. Kwon, and S. Hong, 2015. Computation and field experiment validation of greenhouse energy load using BES (Building Energy Simulation) model. International Journal of Agricultural and Biological Engineering 8(6): 116-127. doi:10.3965/j.ijabe.20150806.2037.
- Hong, E. M., J. Choi, W. H. Nam, M. Kang, and J. Jang, 2014. Soil moisture extraction characteristics of Cucumber crop in protected cultivation. Journal of the Korean Society of Agricultural Engineers 56(2): 37-46. doi:10.5389/KSAE.2014.56.2.037 (in Korean).
- Hong, S. W., A. K. Moon, S. Li, and I. B. Lee, 2015. Data-based model approach to predict internal air temperature of greenhouse. Journal of the Korean Society of Agricultural Engineers 57(3): 9-19. doi:10.5389/KSAE.2015.57.3.009 (in Korean).
- Irabien, A., and R. C. Darton, 2016. Energy-water-food nexus in the Spanish greenhouse tomato production. Clean Technol Environ Policy 18: 1307-1316. doi:10.1007s/10098-015-1076-9. https://doi.org/10.1007/s10098-015-1076-9
- Lee, S., R. H. Mohtar, and S. Yoo, 2019. Assessment of food trade impacts on water, food and land security in the MENA region. Hydrology and Earth System Sciences 23: 557-572. doi:10.5194/hess-23-557-2019.
- Lee, T. S., G. C. Kang, Y. Paek, J. P. Moon, S. S. Oh, and J. K. Kwon, 2016. Analysis of temperature and humidity distributions according to arrangements of air circulation fans in single-span Tomato greenhouse. Protected Horticulture and Plant Factory 25(4): 277-282. doi:10.12791/KSBEC.2016.25.4.277.
- MAFRA (Ministry of Agriculture, Food and Rural Affairs), 2018. Agriculture, food and rural affairs statistics yearbook, 40-44; 88-89. Sejong, Korea (in Korean).
- Nam, S., and H. Shin, 2015. Development of a method to estimate the seasonal heating load for plastic greenhouse. Journal of the Korean Society of Agricultural Engineers 57(5): 37-42. doi:10.5389/KSAE.2015.57.5.037 (in Korean).
- NAAS (National Academy of Agricultural Science), 2015. Standard for designing greenhouse environment, 71-84. Jeollabuk-do, Korea (in Korean).
- Namany, S., T. Al-Ansary, and R. Govindan, 2019. Sustainable energy, water and food nexus systems: a focused review of decision making tools for efficient resource management and governance. Journal of Cleaner Production 225: 610-626. doi:10.1016/j.jclepro.2019.03.304.
- RDA (Rural Development Administration), 2018. 2017 Income analysis of agro and livestock products, 69-125. Jeollabuk-do, Korea (in Korean).
- Shin, H., and S. Nam, 2016. Experimental study on the characteristics of ground heat exchange in heating greenhouse. Protected Horticulture and Plant Factory 25(3): 218-223. doi:10.12791/KSBEC.2016.25.3.218 (in Korean).
- Udink ten Cate, A. J., G. P. A. Bot, and J. J. van Dixhoorn, 1978. Computer control of greenhouse climates. Acta Horticulturae 87: 265-272. doi:10.17660/ActaHortic.1978.87.28.
- Udink ten Cate, A. J., 1983. Modelling and (adaptive) control of greenhouse climates. Ph.D. diss., Wagenigen, the Netherlands: Wageningen Agricultural University.
- van Beveren, P. J. M., J. Bontesma, G. van Straten, and E. J. van Henten, 2015. Optimal control of greenhouse climate using minimal energy and grower defined bounds. Applied Energy 159: 509-519. doi:10.1016/j.apenergy.2015.09.012.
- van Henten, E. J., 1994. Greenhouse climate management: an optimal control approach. Ph.D. diss., Wagenigen, The Netherlands: Wageningen Agricultural University.
- van Henten, E. J., and J. Bontsema, 2009. Time-scale decomposition of an optimal control problem in greenhouse climate management. Control Engineering Practice 17: 88-96. doi:10.1016/j.conengprac.2008.05.008.
- Yoon, P. R., and J. Choi, 2018. Assessment of reference evapotranspiration equations for missing and estimated weather data. Journal of Korean Society of Agricultural Engineers 60(3): 15-25. doi:10.5389/KSAE.2018.60.3.015 (in Korean).