DOI QR코드

DOI QR Code

Evaluation of Mechanical Properties of Early-age Concrete Containing Electric Arc Furnace Oxidizing Slag

전기로 산화슬래그를 혼입한 초기재령 콘크리트의 역학적 특성 평가

  • Kwon, Seung-Jun (Department of Civil and Environmental Engineering, Hannam University) ;
  • Hwang, Sang-Hyeon (Department of Civil and Environmental Engineering, Hannam University) ;
  • Lim, Hee-Seob (Department of Civil and Environmental Engineering, Hannam University)
  • 권성준 (한남대학교 토목환경공학과) ;
  • 황상현 (한남대학교 토목환경공학과) ;
  • 임희섭 (한남대학교 토목환경공학과)
  • Received : 2019.02.15
  • Accepted : 2019.03.21
  • Published : 2019.06.30

Abstract

In this study, the mechanical properties of early-age concrete were evaluated by mixing the electric arc furnace oxidizing slag fine aggregate with 30% and 50% replacement ratio. Slump test, air content test and unit volume weight test were performed for fresh concrete, and compressive strength test and chloride penetration experiments were carried out in hardened concrete. The compressive strength increased up to 7 days of curing age with increasing replacement ratio of the electric furnace oxidizing slag, but the strength decreased to 90% level of OPC concrete at 28 days of age. Regarding the result of chloride penetration test, no significant differences from OPC concrete were evaluated, which shows a feasibility of application to concrete aggregate.

본 연구에서는 전기로 산화슬래그 잔골재를 30%, 50% 치환하여 초기재령 콘크리트의 역학적 특성을 평가하였다. 굳지 않은 콘크리트에서 슬럼프, 공기량, 단위용적질량을 검토하였으며, 경화 콘크리트에서 압축강도와 촉진 염화물 침투 실험을 진행하였다. 전기로 산화슬래그 잔골재 혼입량이 증가함에 따라, 슬럼프 및 공기량이 감소하였으며, 이는 전기로 산화슬래그의 다량의 미립분 및 거친 표면으로 인한 것으로 사료된다. 또한, 압축강도 발현율을 검토한 결과, 재령 7일까지 최대 111% 증가하였지만, 재령 28일에서 약 90%까지 감소하는 것을 확인할 수 있었다. 전기로 산화슬래그 혼입 콘크리트의 초기재령에서의 촉진 염화물 침투 실험결과 OPC 콘크리트와 큰 차이가 나타나지 않음에 따라 콘크리트 대체 골재로 사용함에 있어 충분한 성능을 갖고 있을 것으로 판단된다.

Keywords

GSJHDK_2019_v7n2_93_f0001.png 이미지

Fig. 2. Chemical composition of used materials

GSJHDK_2019_v7n2_93_f0002.png 이미지

Fig. 3. Grading curves

GSJHDK_2019_v7n2_93_f0003.png 이미지

Fig. 4. Test of compressive strength

GSJHDK_2019_v7n2_93_f0004.png 이미지

Fig. 5. Test method of NT BUILD 492

GSJHDK_2019_v7n2_93_f0005.png 이미지

Fig. 6. Test result of compressive strength

GSJHDK_2019_v7n2_93_f0006.png 이미지

Fig. 7. Strength development rate with curing time

GSJHDK_2019_v7n2_93_f0007.png 이미지

Fig. 8. Chloride penetration depth measurement

GSJHDK_2019_v7n2_93_f0008.png 이미지

Fig. 9. Test result of chloride diffusion coefficient

GSJHDK_2019_v7n2_93_f0009.png 이미지

Fig. 1. Test of fresh concrete

Table 1. Experimental plan of concrete

GSJHDK_2019_v7n2_93_t0001.png 이미지

Table 2. Mixing design of concrete

GSJHDK_2019_v7n2_93_t0002.png 이미지

Table 3. Physical properties of cement

GSJHDK_2019_v7n2_93_t0003.png 이미지

Table 4. Physical properties of aggregate

GSJHDK_2019_v7n2_93_t0004.png 이미지

Table 5. Conditions for rapid chloride penetration test

GSJHDK_2019_v7n2_93_t0005.png 이미지

Table 6. Test result of fresh concrete

GSJHDK_2019_v7n2_93_t0006.png 이미지

Table 7. Test result of chloride diffusion

GSJHDK_2019_v7n2_93_t0007.png 이미지

References

  1. Cho, B.S., Lee, H.H., Yang, S.K., Lee, W.J., Um, T.S. (2009). Appraisal of concrete performance and plan for stable use of EAF oxidizing slag as fine aggregate of concrete, Journal of the Korea Concrete Institute, 21, 367-375. https://doi.org/10.4334/JKCI.2009.21.3.367
  2. Choi, S.W., Kim, V., Chang, W.S., Kim, E.Y. (2007). The present situation of production and utilization of steel slag in Korea and other countries, Journal of Korea Concrete Institute, 19(6), 28-33.
  3. Faleschini, F., Brunelli, K., Zanini, M.A., Dabala, M., Pellegrino, C. (2016). Electric arc furnace slag as coarse recycled aggregate for concrete production, Journal of Sustainable Metallurgy, 2(1), 44-50. https://doi.org/10.1007/s40831-015-0029-1
  4. Faraone, N., Tonello, G., Maschio, S. (2009). Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength, Chemophere, 77, 1152-1156. https://doi.org/10.1016/j.chemosphere.2009.08.002
  5. Ha, J.S., Shin, J.H., Chung, L., Kim, H.S. (2016). Performance evaluation of recycled aggregate concrete made of recycled aggregate modified by carbonation, Journal of the Korea Concrete Institute, 28(4), 445-454. https://doi.org/10.4334/JKCI.2016.28.4.445
  6. Kim, J.M., Cho, S.H., Oh, S.Y., Kwak, E.G. (2007). Properties of rapidly-cooled steel slag by atomizing process. Journal of the Korea Concrete Institute, 19(6), 39-45. https://doi.org/10.4334/JKCI.2007.19.1.039
  7. Kim, J.M., Park, H.I. (2012). Evaluation on volume stability of the electric arc furnace oxidizing slag aggregate by hydro thermal condition, Journal of Material Cycles and Waste Management, 29, 551-560.
  8. Kim, K.H. (2011). The prospect for utilization of electronic arc furnace oxidizing slag as concrete aggregate, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(4), 21-29.
  9. Lee, H.S., Lim, H.S., Ismail, M.A. (2017). Quantitative evaluation of free CaO in electric furnace slag using the ethylene glycol method, Construction and Building Materials, 131, 676-681. https://doi.org/10.1016/j.conbuildmat.2016.11.047
  10. Lee, S.H., Lim, D.S., Lee, S.H., Lee, J.H. (2013). Mechanism of strength development in ultra high strength concrete using the electric arc furnace oxidizing slag as fine aggregate, Journal of the Korea Concrete Institute, 25, 3-9. https://doi.org/10.4334/JKCI.2013.25.1.003
  11. Lim, H.S., Lee, H.S. (2011). Experimental study on the development of X-ray shielding concrete utilizing electronic arc furnace oxidizing slag, Architectural Institute of Korea, 27, 125-132.
  12. Lim, H.S., Lee, H.S. (2017). Experimental study on evaluation on volume stability of the electric arc furnace oxidizing slag aggregate, Korea Institute for Structural Maintenance and Inspection, 21(2), 78-86.
  13. Lim, H.S., Lee, H.S. (2017). Study on performance evaluation of concrete using electric arc furnace oxidizing slag aggregate, Korea Institute for Structural Maintenance and Inspection, 21(4), 97-103.
  14. NT BUILD 492. (1999). Chloride Migration Coefficient from Non-Steady-State Migration Experiments, Denmark, Slettetoften: NORDTEST, 1-11.
  15. Onoue, K., Tokitsu, M., Ohtsu, M., Bier, T.A. (2014). Fatigue characteristics of steel-making slag concrete under compression in submerged condition, Construction and Building Materials, 70, 231-242. https://doi.org/10.1016/j.conbuildmat.2014.07.107
  16. Qasrawi, H., Shalabi, F., Asi, I. (2009). Use of low CaO unprocessed steel slag in concrete as fine aggregate, Construction and Building Materials, 23, 1118-1125. https://doi.org/10.1016/j.conbuildmat.2008.06.003
  17. Roslan, N.H., Ismail, M., Abdul-Majid, Z., Ghoreishiamiri, S., Muhammad, B. (2016). Performance of steel slag and steel sludge in concrete, Construction and Building Materials, 104, 16-24. https://doi.org/10.1016/j.conbuildmat.2015.12.008
  18. San-Jose, J.T., Vegas, I., Arribas, I., Marcos, I. (2014). The performance of steel-making slag concretes in the hardened state, Materials and Design, 60, 612-619. https://doi.org/10.1016/j.matdes.2014.04.030
  19. Santamaria, A., Orbe, A., Losanez, M.M., Skaf, M., Ortega-Lopez, V., Gonzalez, J.J. (2017). Self-compacting concrete incorporating electric arc furnace steelmaking slag as aggregate, Materials and Design, 115, 179-193. https://doi.org/10.1016/j.matdes.2016.11.048
  20. Sheen, Y.D., Le, D.H., Sun, T.H. (2015). Innovative usages of stainless steel slags in developing self-compacting concrete, Construction and Building Materials, 101, 268-276. https://doi.org/10.1016/j.conbuildmat.2015.10.079
  21. Song, H.W., Kwon, S.J., Byun, K.J., Park, C.K. (2005). A study on analytical technique of chloride diffusion considering characteristics of mixture design for high performance concrete using mineral admixture, Journal of the Korean Society of Civil Engineers, 25(1A), 213-223.
  22. Tang, L. (1996). Electrically accelerated methods for determining chloride diffusivity in concrete-current development, Magazine of Concrete Research, 48(176), 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  23. Tang, L., Nilsson, L.O. (1992). Rapid determination of the chloride diffusivity in concrete by applying an electrical field, ACI Materials Journal, 89(1), 49-53.
  24. Wang, G., Wang, Y., Gao, Z. (2010). Use of steel slag as a granular material: volume expansion prediction and usability criteria, Journal of Hazardous Materials, 184, 555-560. https://doi.org/10.1016/j.jhazmat.2010.08.071
  25. Yoon, Y.S., Kwon, S.J. (2018). Evaluation of time-dependent chloride resistance in HPC containing fly ash cured for 1 year, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(4), 52-59. https://doi.org/10.11112/JKSMI.2018.22.4.052