DOI QR코드

DOI QR Code

Dispersion Behavior of Graphene with Different Solvents and Surfactants

용매와 분산제의 종류에 따른 그래핀의 분산 거동

  • Perumal, Suguna (Department of Applied Chemistry, Kyungpook National University) ;
  • Lee, Hyang Moo (Department of Applied Chemistry, Kyungpook National University) ;
  • Cheong, In Woo (Department of Applied Chemistry, Kyungpook National University)
  • ;
  • 이향무 (경북대학교 공과대학 응용화학과) ;
  • 정인우 (경북대학교 공과대학 응용화학과)
  • Received : 2019.03.15
  • Accepted : 2019.05.22
  • Published : 2019.06.30

Abstract

Stable graphene dispersions in various organic solvents and in water were achieved via noncovalent functionalization of graphene surfaces using different types of commercially available surfactants. Stable dispersions were obtained in short time sonication, 3 h. In NMP, graphene with Tween and Span series, and with Pluronic surfactants showed stable dispersions. In ethanol, nitrogen based surfactants showed stable dispersions. In water and dichloromethane partially stable graphene dispersions were obtained using poly(4-vinyl pyridine) and sodium dodecyl sulfonate surfactants. Large scale productions of stable dispersions were successful using poly(4-vinyl pyridine), poly(vinyl pyrrolidone), and poly(2-(dimethylamino)ethyl methacrylate). Thus, this work will serve as a library to select the surfactants for different solvent systems.

여러 종류의 용매와 상용화되어 있는 비공유결합성 분산제들을 이용하여 안정한 그래핀 분산액을 제조 하였다. 분산액은 3시간의 초음파 처리를 통하여 제조 되었으며, NMP 용매에서는 Tween 계열과 Span 계열과 Pluronic 계열의 분산제가 안정한 그래핀 분산액을 형성하였다. 또한 에탄올 용매에서는 질소를 포함한 분산제 종류가 안정한 분산액을 형성하였으며, 물과 dichloromethane에서는 모든 분산제에 대하여 대체로 불안정하였지만 poly(4-vinyl pyridine)과 sodium dodecyl sulfonate를 사용한 경우 일부 안정한 분산액을 형성 하였다. 또한 Poly(4-vinyl pyridine), poly(vinyl pyrrolidone), poly(2-(dimethylamino)ethyl methacrylate)를 이용하여 더 큰 용량의 그래핀 분산액을 제조하였다. 본 연구는 그래핀의 분산을 위한 여러 용매 및 분산제에 대한 기준을 제공할 수 있을 것으로 기대된다.

Keywords

JGMHB1_2019_v20n2_53_f0001.png 이미지

Figure 1. Structures of surfactants used to prepare graphene dispersions.

JGMHB1_2019_v20n2_53_f0002.png 이미지

Figure 2. A schematic of the preparation of graphene dispersion.

JGMHB1_2019_v20n2_53_f0003.png 이미지

Figure 3. Photographic images of graphene dispersions with various surfactants in NMP.

JGMHB1_2019_v20n2_53_f0004.png 이미지

Figure 4. Photographic images of graphene dispersions with various surfactants in EtOH.

JGMHB1_2019_v20n2_53_f0005.png 이미지

Figure 5. Photographic images of graphene dispersions with various surfactants in IPA.

JGMHB1_2019_v20n2_53_f0006.png 이미지

Figure 6. Photographic images of graphene dispersions with various surfactants in water.

JGMHB1_2019_v20n2_53_f0007.png 이미지

Figure 7. Photographic images of graphene dispersions with various surfactants in DCM.

JGMHB1_2019_v20n2_53_f0008.png 이미지

Figure 8. TGA curves of the graphene composites obtained from the upper part of the graphene dispersion stabilized by PVP or PVPyr in EtOH and DMA in IPA.

References

  1. C. Soldano, A. Mahmood, and E. Dujardin, Carbon, 48, 2127 (2010). https://doi.org/10.1016/j.carbon.2010.01.058
  2. A. K. Geim, and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  3. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  4. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, Angew. Chem., Int. Ed., 48, 7752 (2009). https://doi.org/10.1002/anie.200901678
  5. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  6. K. S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  7. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  8. I. Forbeaux, J. M. Themlin, and J. M. Debever, Phys. Rev., 58, 16396 (1998). https://doi.org/10.1103/PhysRevB.58.16396
  9. E. Ou, Y. Xie, C. Peng, Y. Song, H. Peng, Y. Xiong, and W. Xu, RSC Adv., 3, 9490 (2013). https://doi.org/10.1039/c3ra40602d
  10. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. Mcgovern, B. Holand, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, Nat. Nanotechnol., 3, 563 (2008). https://doi.org/10.1038/nnano.2008.215
  11. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg and J. N. Coleman, J. Am. Chem. Soc., 131, 3611 (2009). https://doi.org/10.1021/ja807449u
  12. L. Xu, J.W. McGraw, F. Gao, M. Grundy, Z. Ye, Z. Gu, and J. L. Shepherd, J. Phys. Chem. C, 117, 10730 (2013). https://doi.org/10.1021/jp4008009
  13. W. Choi, I. Lahiri, R. Seelaboyina and Y. S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010). https://doi.org/10.1080/10408430903505036
  14. Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, Langmuir, 26, 3208 (2010). https://doi.org/10.1021/la903188a
  15. N.-W. Pu, C.-A. Wang, Y.-M. Liu, Y. Sung, D.-S., Wang, and M.-D. Ger, J. Taiwan Chem. Eng., 43, 140 (2012). https://doi.org/10.1016/j.jtice.2011.06.012
  16. E.- Y. Choi, T. H. Han, J. Hong, J. E. Kim, S. H. Lee, H. W. Kim, and S. O. Kim, J. Mater. Chem., 20, 1907 (2010). https://doi.org/10.1039/b919074k
  17. M. Nikdel, M. Salami-Kalajahi, and M. S. Hosseini, RSC Adv., 4, 16743 (2014). https://doi.org/10.1039/c4ra01701c
  18. A. B.Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, A. K. Stubos, and C. Trapalis, Solid State Commun., 149, 2172 (2009). https://doi.org/10.1016/j.ssc.2009.09.018
  19. S. De, P. J. King, M. Lotya, A. O'Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, Small, 6, 458 (2009). https://doi.org/10.1002/smll.200901162
  20. A. A. Green, M. C. Hersam, Nano Lett., 9, 4031 (2009). https://doi.org/10.1021/nl902200b
  21. Z. Liu, J. Liu, L. Cui, R. Wang, X. Luo, C. J. Barrow, and W. Yang, Carbon, 51, 148 (2013). https://doi.org/10.1016/j.carbon.2012.08.023
  22. S. Perumal, K. T. Park, H. M. Lee, and I. W. Cheong, J. Colloid Interface Sci., 464, 25 (2016). https://doi.org/10.1016/j.jcis.2015.11.014
  23. S. Perumal, H. M. Lee, and I. W. Cheong, Carbon, 107, 74 (2016). https://doi.org/10.1016/j.carbon.2016.05.049
  24. S. Perumal, H. M. Lee, and I. W. Cheong, J. Colloid Interface Sci., 497, 359 (2017). https://doi.org/10.1016/j.jcis.2017.03.027
  25. H. M. Lee, S. Perumal, and I. W. Cheong, Polymers, 8, 101 (2016). https://doi.org/10.3390/polym8030101
  26. X. Zhang, A. C. Coleman, N. Katsonis, W. R. Browne, B. J. Wees, and B. L. Feringa, Chem. Comm., 46, 7539 (2010). https://doi.org/10.1039/c0cc02688c
  27. U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, Small, 6, 864 (2010). https://doi.org/10.1002/smll.200902066
  28. A. O'neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, J. Phys. Chem. C, 115, 5422 (2011). https://doi.org/10.1021/jp110942e
  29. D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, J. Colloid Interface Sci., 430, 108 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
  30. J. S. Y. Chia, M. T. T. Tan, P. S. Khiew, J. K. Chin, H. Lee, D. C. S. Bien, and C. W. Siong, Chem. Eng. J., 249, 270 (2014). https://doi.org/10.1016/j.cej.2014.03.081
  31. J. Xu, D. K. Dang, V. T. Tran, X. Liu, J. S. Chung, S. H. Hur, W. M. Choi, E. J. Kim, and P. A. Kohl, J. Colloid Interface Sci., 418, 37 (2014). https://doi.org/10.1016/j.jcis.2013.12.009
  32. A. F. Ahmad, F. H. A. Moin, H. M. K. Mohd, I. A. Rahman, F. Mohamed, C. C. Hua, S. Ramli, and S. Radiman, Malaysian J. Analytical Sci., 3, 475 (2013).
  33. Y. Yan, L. Piao, S.-H. Kim, W. Li, and H. Zhou, RSC Adv., 5, 40199 (2015). https://doi.org/10.1039/C5RA03525B
  34. D. Parviz, S. Das, H.S. T. Ahmed, F. Irin, S. Bhattacharia, and M. J. Green, ACS Nano, 6, 8857 (2012). https://doi.org/10.1021/nn302784m
  35. J.-W. T. Seo, A. A. Green, A. L. Antaris, and M. C. Hersam, J. Phys. Chem, Lett., 2, 1004 (2011). https://doi.org/10.1021/jz2003556
  36. J. Liu, W. Yang, L. Tao, D. Li, C. Boyer, and T. P. Davis, J. Polym. Sci.: Part A: Polym. Chem., 48, 425 (2009).
  37. K. T. Park, S. Perumal, H. M. Lee, Y. H. Kim, and I. W. Cheong, J. Adhesion and Interface, 18, 109 (2017).