Figure 1. Structures of surfactants used to prepare graphene dispersions.
Figure 2. A schematic of the preparation of graphene dispersion.
Figure 3. Photographic images of graphene dispersions with various surfactants in NMP.
Figure 4. Photographic images of graphene dispersions with various surfactants in EtOH.
Figure 5. Photographic images of graphene dispersions with various surfactants in IPA.
Figure 6. Photographic images of graphene dispersions with various surfactants in water.
Figure 7. Photographic images of graphene dispersions with various surfactants in DCM.
Figure 8. TGA curves of the graphene composites obtained from the upper part of the graphene dispersion stabilized by PVP or PVPyr in EtOH and DMA in IPA.
References
- C. Soldano, A. Mahmood, and E. Dujardin, Carbon, 48, 2127 (2010). https://doi.org/10.1016/j.carbon.2010.01.058
- A. K. Geim, and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
- C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
- C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, Angew. Chem., Int. Ed., 48, 7752 (2009). https://doi.org/10.1002/anie.200901678
- Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
- K. S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
- X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
- I. Forbeaux, J. M. Themlin, and J. M. Debever, Phys. Rev., 58, 16396 (1998). https://doi.org/10.1103/PhysRevB.58.16396
- E. Ou, Y. Xie, C. Peng, Y. Song, H. Peng, Y. Xiong, and W. Xu, RSC Adv., 3, 9490 (2013). https://doi.org/10.1039/c3ra40602d
- Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. Mcgovern, B. Holand, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, Nat. Nanotechnol., 3, 563 (2008). https://doi.org/10.1038/nnano.2008.215
- M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg and J. N. Coleman, J. Am. Chem. Soc., 131, 3611 (2009). https://doi.org/10.1021/ja807449u
- L. Xu, J.W. McGraw, F. Gao, M. Grundy, Z. Ye, Z. Gu, and J. L. Shepherd, J. Phys. Chem. C, 117, 10730 (2013). https://doi.org/10.1021/jp4008009
- W. Choi, I. Lahiri, R. Seelaboyina and Y. S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010). https://doi.org/10.1080/10408430903505036
- Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, Langmuir, 26, 3208 (2010). https://doi.org/10.1021/la903188a
- N.-W. Pu, C.-A. Wang, Y.-M. Liu, Y. Sung, D.-S., Wang, and M.-D. Ger, J. Taiwan Chem. Eng., 43, 140 (2012). https://doi.org/10.1016/j.jtice.2011.06.012
- E.- Y. Choi, T. H. Han, J. Hong, J. E. Kim, S. H. Lee, H. W. Kim, and S. O. Kim, J. Mater. Chem., 20, 1907 (2010). https://doi.org/10.1039/b919074k
- M. Nikdel, M. Salami-Kalajahi, and M. S. Hosseini, RSC Adv., 4, 16743 (2014). https://doi.org/10.1039/c4ra01701c
- A. B.Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, A. K. Stubos, and C. Trapalis, Solid State Commun., 149, 2172 (2009). https://doi.org/10.1016/j.ssc.2009.09.018
- S. De, P. J. King, M. Lotya, A. O'Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, Small, 6, 458 (2009). https://doi.org/10.1002/smll.200901162
- A. A. Green, M. C. Hersam, Nano Lett., 9, 4031 (2009). https://doi.org/10.1021/nl902200b
- Z. Liu, J. Liu, L. Cui, R. Wang, X. Luo, C. J. Barrow, and W. Yang, Carbon, 51, 148 (2013). https://doi.org/10.1016/j.carbon.2012.08.023
- S. Perumal, K. T. Park, H. M. Lee, and I. W. Cheong, J. Colloid Interface Sci., 464, 25 (2016). https://doi.org/10.1016/j.jcis.2015.11.014
- S. Perumal, H. M. Lee, and I. W. Cheong, Carbon, 107, 74 (2016). https://doi.org/10.1016/j.carbon.2016.05.049
- S. Perumal, H. M. Lee, and I. W. Cheong, J. Colloid Interface Sci., 497, 359 (2017). https://doi.org/10.1016/j.jcis.2017.03.027
- H. M. Lee, S. Perumal, and I. W. Cheong, Polymers, 8, 101 (2016). https://doi.org/10.3390/polym8030101
- X. Zhang, A. C. Coleman, N. Katsonis, W. R. Browne, B. J. Wees, and B. L. Feringa, Chem. Comm., 46, 7539 (2010). https://doi.org/10.1039/c0cc02688c
- U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, Small, 6, 864 (2010). https://doi.org/10.1002/smll.200902066
- A. O'neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, J. Phys. Chem. C, 115, 5422 (2011). https://doi.org/10.1021/jp110942e
- D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, J. Colloid Interface Sci., 430, 108 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
- J. S. Y. Chia, M. T. T. Tan, P. S. Khiew, J. K. Chin, H. Lee, D. C. S. Bien, and C. W. Siong, Chem. Eng. J., 249, 270 (2014). https://doi.org/10.1016/j.cej.2014.03.081
- J. Xu, D. K. Dang, V. T. Tran, X. Liu, J. S. Chung, S. H. Hur, W. M. Choi, E. J. Kim, and P. A. Kohl, J. Colloid Interface Sci., 418, 37 (2014). https://doi.org/10.1016/j.jcis.2013.12.009
- A. F. Ahmad, F. H. A. Moin, H. M. K. Mohd, I. A. Rahman, F. Mohamed, C. C. Hua, S. Ramli, and S. Radiman, Malaysian J. Analytical Sci., 3, 475 (2013).
- Y. Yan, L. Piao, S.-H. Kim, W. Li, and H. Zhou, RSC Adv., 5, 40199 (2015). https://doi.org/10.1039/C5RA03525B
- D. Parviz, S. Das, H.S. T. Ahmed, F. Irin, S. Bhattacharia, and M. J. Green, ACS Nano, 6, 8857 (2012). https://doi.org/10.1021/nn302784m
- J.-W. T. Seo, A. A. Green, A. L. Antaris, and M. C. Hersam, J. Phys. Chem, Lett., 2, 1004 (2011). https://doi.org/10.1021/jz2003556
- J. Liu, W. Yang, L. Tao, D. Li, C. Boyer, and T. P. Davis, J. Polym. Sci.: Part A: Polym. Chem., 48, 425 (2009).
- K. T. Park, S. Perumal, H. M. Lee, Y. H. Kim, and I. W. Cheong, J. Adhesion and Interface, 18, 109 (2017).