• Title/Summary/Keyword: graphene dispersion

Search Result 102, Processing Time 0.021 seconds

Improving dispersion of multi-walled carbon nanotubes and graphene using a common non-covalent modifier

  • Kwon, Youbin;Shim, Wonbo;Jeon, Seung-Yeol;Youk, Ji-Ho;Yu, Woong-Ryeol
    • Carbon letters
    • /
    • v.20
    • /
    • pp.53-61
    • /
    • 2016
  • The reportedly synergistic effects of carbon nanotubes (CNTs) and graphene hybrids have prompted strong demand for an efficient modifier to enhance their dispersion. Here, we investigated the ability of poly(acrylonitrile) (PAN) to overcome the van der Waals interaction of multi-walled CNTs (MWCNTs) and graphene by employing a simple wrapping process involving ultrasonication and subsequent centrifugation of PAN/MWCNT/graphene solutions. The physical wrapping of MWCNTs and graphene with PAN was investigated for various PAN concentrations, in an attempt to simplify and improve the polymer-wrapping process. Transmission electron microscopy analysis confirmed the wrapping of the MWCNTs and graphene with PAN layers. The interaction between the graphitic structure and the PAN molecules was examined using proton nuclear magnetic resonance, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The obtained results revealed that the cyano groups of the PAN molecules facilitated adhesion of the PAN molecules to the MWCNTs and graphene for polymer wrapping. The resulting enhanced dispersion of MWCNTs and graphene was verified from zeta potential and shelf-life measurements.

A Study on Physical Dispersion and Chemical Modification of Graphene (Graphene의 물리적 분산과 화학적 표면 개질 연구)

  • Yim, Eun-Chae;Kim, Seong-Jun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.792-797
    • /
    • 2015
  • Graphene has a wide spectrum on its application field due to various and excellent physical properties. However, it is very difficult to apply that graphene exists as lump or fold condition in general organic solvents. Besides, graphene was difficult to maintain as uniform condition due to chemical inert and distributions with various size and shapes. Therefore, this study was focused to study dispersion and modifying methods of aggregated graphene. The dispersion methods contain as follow: i) physical milling using glass bead, ii) co-treatment of glass bead and ultrasonic waves, iii) dispersion in organic solvents, iv) modifying with dry-ice. Milling using glass bead with size 2.5 mm was effective to be size decrease of 36.4% in comparison with control group. Mixed treatment of glass bead (size 2.5 mm) and ultrasonic waves (225W, 10 min) showed relative size decrease of 76%, suggesting that the size decrease depends on the size of glass bead, intensity of ultrasonic waves and treatment time. Solvents of Ethyl acetate (EA) and Isoprophyl alcohol (IPA) were used in order to improve dispersion by modifying surface of graphene. IPA of them showed a favorable dispersion with more -CO functional groups in the FT-IR analysis. On the other hand, the oxygen content of graphene surface modified by dry-ice was highly increased from 0.8 to 4.9%. From the results, it was decided that the favorable dispersion state for a long time was obtained under the condition of -CO functional group increase in IPA solvent.

Modeling wave propagation in graphene sheets influenced by magnetic field via a refined trigonometric two-variable plate theory

  • Fardshad, R. Ebrahimi;Mohammadi, Y.;Ebrahimi, F.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.329-338
    • /
    • 2019
  • In this paper, the magnetic field influence on the wave propagation characteristics of graphene nanosheets is examined within the frame work of a two-variable plate theory. The small-scale effect is taken into consideration based on the nonlocal strain gradient theory. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. A derivation of the differential equation is conducted, employing extended principle of Hamilton and solved my means of analytical solution. A refined trigonometric two-variable plate theory is employed in Kinematic relations. The scattering relation of wave propagation in solid bodies which captures the relation of wave number and the resultant frequency is also investigated. According to the numerical results, it is revealed that the proposed modeling can provide accurate wave dispersion results of the graphene nanosheets as compared to some cases in the literature. It is shown that the wave dispersion characteristics of graphene sheets are influenced by magnetic field, elastic foundation and nonlocal parameters. Numerical results are presented to serve as benchmarks for future analyses of graphene nanosheets.

Dispersions of partially reduced graphene oxide in various organic solvents and polymers

  • Kim, Hye Min;Kim, Seo Gyun;Lee, Heon Sang
    • Carbon letters
    • /
    • v.23
    • /
    • pp.55-62
    • /
    • 2017
  • We report on the dispersion state of partially reduced graphene oxide (PRGO) in organic solvents, namely methyl ethyl ketone, ethyl acetate, methylene chloride, toluene, and xylene, by controlling the carbon to oxygen (C/O) atomic ratio of the PRGOs. A two-phase solvent exchange method is also proposed to transfer PRGO from water to an aprotic solvent, such as methyl ethyl ketone. We achieve relatively good dispersion in aprotic and non-polar solvents by controlling the C/O atomic ratio of the PRGOs and applying the two-phase solvent exchange method. There is an increase in the glass transition temperatures with the dispersion of PRGOs into amorphous polymers, in particular a $4.4^{\circ}C$ increase for poly(methyl methacrylate) and $3.0^{\circ}C$ increase for polycarbonate. Good dispersion of PRGO in a nonpolar polymer, such as linear low density polyethylene, is also obtained.

Solubility Study of Graphene-oxide with Various Solvents (산화그래핀(Graphene oxide)의 솔벤트(solvent)별 Solubility에 대한 연구)

  • Jung, Su-Yeon;Choi, Sung-Woong
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.18-22
    • /
    • 2022
  • Dispersion is one of the most important factors in the manufacture of composite materials. In the manufacture of composite materials, solvents are used to better disperse the reinforcement, nano-filler in the matrix. Since dispersion is affected with solvents, it is necessary to study which solvent is adopted to get good dispersion. In this study, the dispersion behavior and solubility of graphene oxide(GO) were examined under various solvents (DMF, NMP, ethylene glycol, Acetone, DI water) to identify dispersion. As a result of UV-Vis spectroscopy absorbance measurement, it was found that DMF and ethylene glycol had the best dispersibility, whereas DI water showed the lowest dispersibility. In addition, as a result of visually observing the dispersion according to the surface tension and time, it was found that the dispersibility was excellent in the order of DI water, ethylene glycol, NMP, DMF, and acetone, which was consistent with the Hansen solubility parameter value.

Synthesis of Graphene Coated Aluminum Powders by Self-assemble Reaction (자기 조립 반응에 의한 그래핀이 코팅된 알루미늄 입자의 합성 방법)

  • Hwang, Jin Uk;Tak, Woo Seong;Nam, Sang Yong;Kim, Woo Sik
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.383-388
    • /
    • 2019
  • To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.

Solvent-Polymer Interactions for Stable Non-Aqueous Graphene Dispersions in the Presence of PVK-b-PVP Block Copolymer (PVK-b-PVP 블록 공중합체의 존재 하에서 안정한 비 수계 그래핀 분산액을 위한 용매-고분자 상호작용에 관한 연구)

  • Park, Kyung Tae;Perumal, Suguna;Lee, Hyang Moo;Kim, Young Hyun;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.109-117
    • /
    • 2017
  • Poly(N-vinyl carbazole) (PVK) homopolymer, poly(4-vinylpyridine) (PVP) homopolymer, and PVK-b-PVP block copolymer were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and the polymers were used to prepare non-aqueous graphene dispersions with four different solvents, ethanol, N-methyl-2-pyrrolidone (NMP), dichloromethane (DCM), and tetrahydrofuran (THF). $^1H-$ and $^{13}C-NMR$ spectroscopy, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) were carried out to confirm the chemical structure of the polymers. Stability of graphene dispersions was measured by on-line turbidity measurement. Time-dependent Turbiscan Stability Index (TSI) values were interpreted in terms of surface tension (${\sigma}$) and solubility parameter (${\delta}$) among solvents, polymers, and graphene. It was confirmed that the solubilities of polymer and surface tension between solvent and graphene affected the dispersion stability of graphene. PVK-b-PVP block copolymer could effectively maintain the low TSI values of graphene dispersions in ethanol and THF, which have been known as poor solvents for graphene dispersions. It can also be noted that DCM shows good dispersion stability comparable to NMP, which has been known as the best solvent for graphene dispersion.

Carbon Nano-Powder Functionalization and Disperisibility with Plasma Discharge

  • Gang, Yu-Seok;Jeong, Man-Gi;Lee, Deok-Yeon;Song, Seok-Gyun;Kim, Seong-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.491-491
    • /
    • 2013
  • A novel plasma system has been developed for 3-dimensional modification of the carbon nano-powders. Improvement of dispersion of these nano materials are studied by plasma discharge, not using chemical modification. The plasma process is considered to great advantages over wet chemical process due to environmental, economic viewpoint, and uniformity over the treated volume. The uniform dispersion is a critical factor for these material's nano composite applications. Using this plasma system, graphene, carbon black, and CNT was treated and functionalized. Several key discharge conditions such as Ar/H2/O2 or Ar/H2/NH3 gas ratio, treatment time, power, feeder's vibration frequency are investigated. Hydrophobic of graphene has turned some more into hydrophilic by reaction test with water, electrophoresis, surface contact angle test, and turbidity analysis. The oxygen content ratio in the plasma treated CNT has increased about 3.7 times than the untreatedone. In the case of graphene and carbon black, the oxygen- and nitrogen- content has been enhanced average 10%. O-H (N-H) peak, C-O (C-N) peak, and C=O (C=N) peak data have been detected by FTIR measurement and intensified compared to before-plasma treatment due to O2 or NH3 content.

  • PDF

Study on Mechanical Properties Modification of Styrene Butadiene Rubber Composites Filling with Graphene and Molybdenum Disulfide

  • Xu, Li Xiang;Sohn, Mi Hyun;Kim, Yu Soo;Jeong, Ye Rin;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.52-59
    • /
    • 2019
  • Styrene-butadiene rubber (SBR) composites, incorporated with graphene, molybdenum disulfide and their hybrid in different filling ratio, were fabricated by a two roll-mill. The dispersion states of all the samples' matrix were employed by carbon black dispersion tester. The curing properties of the pre-vulcanized rubber composites were investigated, after molding by heating press machine, the tensile strength, storage modulus, friction coefficient, the swelling property had also been tested according to ASTM. The composite G1M10 (filling with 1 phr graphene and 10 phr molybdenum) showed the best mechanical properties and viscoelastic properties in this research with a better filler dispersion state and more compact matrix structure.

Fundamental Issues in Graphene: Material Properties and Applications

  • Choi, Sung-Yool
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.67-67
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, exhibits fascinating electrical properties, such as a linear energy dispersion relation and high mobility in addition to a wide-range optical absorption and high thermal conductivity. Graphene's outstanding tensile strength allows graphene-based electronic and photonic devices to be flexible, bendable, or even stretchable. Recently many groups have reported high performance electronic and optoelectronic devices based on graphene materials, i.e. field-effect transistors, gas sensors, nonvolatile memory devices, and plasmonic waveguides, in which versatile properties of graphene materials have been incorporated into a flexible electronic or optoelectronic platform. However, there are several fundamental or technological hurdles to be overcome in real applications of graphene in electronics and optoelectronics. In this tutorial we will present a short introduction to the basic material properties and recent progresses in applications of graphene to electronics and optoelectronics and discuss future outlook of graphene-based devices.

  • PDF