DOI QR코드

DOI QR Code

Geographical Variation of the Oriental Fruit Fly, Bactrocera dorsalis, Occurring in Taiwan

오리엔탈과실파리 유전변이 - 대만 지역 집단변이

  • Kim, Yonggyun (Department of Plant Medicals, College of Life Sciences, Andong National University) ;
  • Kim, Hyoil (Department of Plant Medicals, College of Life Sciences, Andong National University) ;
  • Mollah, Md. Mahi Imam (Department of Plant Medicals, College of Life Sciences, Andong National University) ;
  • Al Baki, Md. Abdullah (Department of Plant Medicals, College of Life Sciences, Andong National University)
  • 김용균 (안동대학교 생명과학대학 식물의학과) ;
  • 김효일 (안동대학교 생명과학대학 식물의학과) ;
  • 마히이맘몰라 (안동대학교 생명과학대학 식물의학과) ;
  • 압둘라알바키 (안동대학교 생명과학대학 식물의학과)
  • Received : 2019.03.26
  • Accepted : 2019.05.16
  • Published : 2019.06.01

Abstract

This study analyzed genetic variation of the Oriental fruit fly (OFF), Bactrocera dorsalis, which is designated to be a quarantine insect pest in Korea. OFF samples endemic to Taiwan were collected at three different locations (Taipei, Taichung, and Kaohsiung) for three days from July 30 to August 1 in 2018 and assessed in their age and mitochondrial DNA sequence variations. In these places, 1,085 OFF males were collected using methyl eugenol lure while 30 males of Zeugodacus cucurbitae and one male of Bactrocera tau were collected using Cuelure. A protein diet lure attracted 6 flies including one OFF and 5 flies of Z. cucurbitae. Male heads of OFF contained pterin, which increased in contents with age from 32 to $59{\mu}g/head$. There was a local variation in pterin amounts in OFF heads, in which Kaohsiung population had lower amounts of pterin than Taipei and Taichung populations. Genetic distance among these three populations were measured by random amplified polymorphic DNA and showed that Taipei population was separated from Taichung/Kaohsiung cluster. Genetic variation was also analyzed in sequence variations in cytochrome oxidase I (CO-I) and NADH dehydrogenase I (ND-I). There was 7.8% variation in CO-I sequence (360 residues) and 6.6% variation in ND-I sequence (213 residues). These polymorphic sites are proposed to be used to develop SNP (single nucleotide polymorphism) markers characteristic to Taiwan OFF populations.

본 연구는 국내 금지급 과실파리인 오리엔탈과실파리(Bactrocera dorsalis)에 대한 유전적 변이를 분석하였다. 이를 위해 오리엔탈과실파리가 자생하는 대만 지역을 대상으로 2019년 동일한 시기(3일간: 7월 30일~8월 1일)에 서로 다른 세 지역(타이페이, 타이중, 카오슝)에서 과실파리류를 채집하여 나이 변이 및 미토콘드리아 서열 변이를 각각 비교하였다. 세 지역에서 채집된 오리엔탈과실파리는 1,085마리로서 메틸유제놀 유인제에 모두 유인되었으며, 큐루어 유인제에는 30마리의 오이과실파리(Zeugodacus cucurbitae) 및 1마리의 타우과실파리(Bactrocera tau)만 채집되었다. 단백질먹이 유인제에는 총 6마리가 포획되었으며 이 가운데 오리엔탈과실파리는 1마리가 포함되었으며 나머지는 오이과실파리였다. 오리엔탈과실파리 수컷의 머리에는 테린이 포함되었으며 나이가 증가함에 따라 각 머리에는 $32{\mu}g$에서 $59{\mu}g$까지 테린 함량이 증가하였다. 대만 세 지역의 수컷 집단들은 테린 양에 차이를 나타냈으며, 카오슝 집단이 타이페이와 타이중 집단에 비해 적은 테린 양을 보유하였다. 이들 세 지역 사이에 유전적 거리가 RAPD (random amplified polymorphic DNA)를 이용하여 분석되었으며 타이페이 집단이 타이중 및 카오슝 집단들과 차이를 나타내는 것으로 나타났다. 유전적 변이는 미토콘드리아의 cytochrome oxidase I (CO-I)과 NADH dehydrogenase I (ND-I)을 각각 비교하였다. CO-I 영역 가운데 360개 염기서열을 비교한 결과 7.8%의 염기서열 변이를 나타냈다. ND-I 영역을 비교한 결과 213개 염기서열 가운데 6.6%의 염기서열 변이를 보였다. 이들 변이 서열을 대만 지역에 발생하는 오리엔탈과실파리의 특이적 SNP (single nucleotide polymorphism) 마커로 개발하는 데 추천한다.

Keywords

OOGCBV_2019_v58n2_133_f0001.png 이미지

Fig. 1. B. dorsalis larvae infesting wax apple (Syzygium samarangense) in National Taiwan University. (A) A damaged fruit containing larvae (B) Anterior morphology showing mouth part (C) Posterior morphology showing spiracles (D) CO-I sequence and Blast search.

OOGCBV_2019_v58n2_133_f0002.png 이미지

Fig. 2. Age variation of B. dorsalis male adults among different places of Taiwan. (A) Head pterin amounts in different ages of B. dorsalis adults reared at 25℃. (B) Pterin amounts in three different locations in Taiwan. In each locality, 30 male heads were analyzed. Different letters above standard error bars indicate significant different among at type I error = 0.05 (LSD test).

OOGCBV_2019_v58n2_133_f0003.png 이미지

Fig. 3. Genetic distance analysis among three local populations of B. dorsalis using RAPD. Their hierarchical clustering using 8041 (A) and 8011 (B) RAPD markers.

OOGCBV_2019_v58n2_133_f0004.png 이미지

Fig. 4. Phylogenetic analysis of three local populations of B. dorsalis using CO-I (A) and ND-I sequences. Three locations include 6 fly samples of Taipei (TP1-TP6), Taichung (TC1-TC6), and Kaohsiung (TK1-TK6). All sequences were aligned with BioEdit 7.2 program and trimmed off. The processed sequences were phylogenetically analyzed with Neighbor-joining method using MEGA 6.0 program (Tamura et al., 2013). Figures at tree nodes indicate bootstrap values obtained after 1,000 repetitions.

OOGCBV_2019_v58n2_133_f0005.png 이미지

Fig. 5. Sequence alignments of CO-I (A) and ND-I (B) of B. dorsalis collected from three locations in Taiwan: Taipei (TP), Taichung (TC), and Kaohsiung (TK). Alignment was performed by two steps. At first step, 6 individual DNA samples were aligned to produce a conserved sequence using Clustal W program of DNAStar-SeqMag. In next step, three conserved sequences were aligned. Arrows indicate hot spots containing polymorphic sequences at least two locations.

Table 1. Statistic of fruit fly collection from July 30 to Aug 1 in Taiwan

OOGCBV_2019_v58n2_133_t0001.png 이미지

Table 2. ANOVA of pterin amounts in B. dorsalis heads

OOGCBV_2019_v58n2_133_t0002.png 이미지

Table 3. Polymorphic sites in 360 nucleotides of CO-I of B. dorsalis in three Taiwan populations: Taipei, Taichung, and Kaohsiung

OOGCBV_2019_v58n2_133_t0003.png 이미지

Table 4. Polymorphic sites in 213 nucleotides of ND-I of B. dorsalis in three Taiwan populations: Taipei, Taichung, and Kaohsiung

OOGCBV_2019_v58n2_133_t0004.png 이미지

References

  1. Al Baki, A., Keum, E., Kim, H., Song, Y., Kim. Y., Kwon, K., Park, Y., 2017. Age grading and gene flow of overwintered Bactrocera scutellata populations. J. Asia Pac. Entomol. 20, 1402-1409. https://doi.org/10.1016/j.aspen.2017.10.008
  2. APQA (Animal and Plant Quarantine Agency). 2018. http://www.qia.go.kr/plant/pest/listqiaBing3_2433WebAction.do?type=1&clear=1 (accessed on September 27, 2018).
  3. Chen, P.H., Wu, W.J., Hsu, J.C., 2018. Detection of male Oriental fruit fly (Diptera: Tephritidae) susceptibility to naled- and fipronilintoxicated methyl eugenol. J. Econ. Entomol. 112, 316-323. https://doi.org/10.1093/jee/toy278
  4. Choi, D., Kwon, G., Kim, Y., 2018. Efficacy of wax-formulated lures on monitoring a quarantine insect pest, Zeugodacus caudata (Diptera: Tephritidae). Korean J. Appl. Entomol. 57, 185-190. https://doi.org/10.5656/KSAE.2018.06.0.019
  5. Cognato, A.I., 2006. Standard percent DNA sequence difference for insects does not predict species boundaries. J. Econ. Entomol. 99, 1037-1045. https://doi.org/10.1093/jee/99.4.1037
  6. Cunningham, R.T., 1989. Population detection, in: Robinson, A.S., Hooper, G. (Eds.), Fruit flies: their biology, natural enemies and control. Elsevier, Amsterdam, pp. 221-230.
  7. Han, H.Y., Choi, D.S., Rho, K.E., 2017. Taxonomy of Korean Bactrocera (Diptera: Tephritidae: Dacinae) with review of their biology. J. Asia Pac. Entomol. 20, 1321-1332. https://doi.org/10.1016/j.aspen.2017.09.011
  8. Kim, E., Kim, Y., 2014. A report on mixed occurrence of tobacco whitefly (Bemisia tabaci) biotypes B and Q in Oriental melon farms in Kyungpook province, Korea. Korean J. Appl. Entomol. 53, 465-472. https://doi.org/10.5656/KSAE.2014.09.0.038
  9. Kim, Y., Kim, D., 2016. Integrated pest management against Bactrocera fruit flies. Korean J. Appl. Entomol. 55, 359-376. https://doi.org/10.5656/KSAE.2016.10.0.026
  10. Kim, Y., Kwon, G., 2018. Development of female annihilation technique against pumpkin fruit flies using protein-based terpinyl acetate. Korean J. Appl. Entomol. 57, 69-75. https://doi.org/10.5656/KSAE.2018.01.1.057
  11. Kim, Y., Kim, D., Park, K., Han, H., 2017a. Manual for security system against high risk fruit flies. HongReung Science, Seoul, Korea.
  12. Kim, K., Kim, M., Kwon, G., Kim, Y., 2017b. Technologies required for development of trap-based MAT control against the striped fruit fly, Bactrocera scutellata. Korean J. Appl. Entomol. 56, 51-60. https://doi.org/10.5656/KSAE.2017.02.1.058
  13. Kim, Y., Kim, M., Kim, K., Vatanparast, M., Kim, Y., Kwon, G., 2017c. Formulation of wax type dispenser monitoring the Oriental fruit fly, Bactercera dorsalis, and its molecular diagnostic technology. Korean J. Appl. Entomol. 56, 289-294. https://doi.org/10.5656/KSAE.2017.06.0.004
  14. Kim, Y., Kim, D., Park, K., Han, H., 2018a. Manual (II) for security system against high risk fruit flies. HongReung Science, Seoul, Korea.
  15. Kim, Y., Imam, M., Al Baki, M.A., Ahn, J.J., 2018b. Monitoring the Oriental fruit fly (Bactrocera dorsalis), the melon fly (B. cucurbitae), and B. tau fruit fly using wax formulation lures. Korean J. Appl. Entomol. 57, 51-52. https://doi.org/10.5656/KSAE.2017.11.0.040
  16. Krafsur, E.S., Rosales, A.L., Kim, Y., 1999. Age structure of overwintered face fly populations estimated by pteridine concentrations and ovarian dynamics. Med. Vet. Entomol. 13, 41-47. https://doi.org/10.1046/j.1365-2915.1999.00132.x
  17. Lomax, M.I., Hewett-Emmett, D., Yang, T.L., Grossman, L.I., 1992. Rapid evolution of the human gene for cytochrome c oxidase subunit IV. Proc. Natl. Acad. Sci. USA 89, 5266-5270. https://doi.org/10.1073/pnas.89.12.5266
  18. Nishida, R., Fukami, H., 1990. Sequestration of distasteful compounds by some pharmacophagous insects. J. Chem. Ecol. 16, 151-164. https://doi.org/10.1007/BF01021276
  19. Norrbom, A.L., Carroll, L.E., Thompson, F.C., White, I.M., Freidberg, A., 1999. Systematic database of names, in: Thompson, F.C. (Ed.), Fruit fly expert system and systematic information database, Diptera Data Dissemination Disk 1 & Myia. pp. 65-251.
  20. Raghu, S., 2004. Functional significance of phytochemical lures to dacine fruit flies (Diptera: Tephritidae): an ecological and evolutionary synthesis. Bull. Entomol. Res. 94, 385-399. https://doi.org/10.1079/BER2004313
  21. Ratnasingham, S., Hebert, P.D.N., 2007. BOLD: the barcode of life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355-364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  22. SAS Institute, Inc., 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
  23. Shelly, T.E., 2000. Flower-feeding effects mating performance in male oriental fruit flies Bactrocera dorsalis. Ecol. Entomol. 25, 109-114. https://doi.org/10.1046/j.1365-2311.2000.00231.x
  24. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis, version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  25. Tan, K.H., 2000. Sex pheromone components in defense of melon fly, Bactrocera cucurbitae against Asian house gecko, Hemidactylus frenatus. J. Chem. Ecol. 26, 697-704. https://doi.org/10.1023/A:1005480206023
  26. Tan, K.H., Nishida, R., 1998. Ecological significance of male attractant in the defence and mating strategies of the fruit fly, Bactrocera papayae. Entomol. Exp. Appl. 89, 155-158. https://doi.org/10.1046/j.1570-7458.1998.00394.x
  27. Virgilio, M., Jordaens, K., Verwimp, C., White, I.M., De Meyer, M., 2015. Higher phylogeny of frugivorous flies (Diptera, Tephritidae, Dacini): Localised partition conflicts and a novel generic classification. Mol. Phylogenet. Evol. 85, 171-179. https://doi.org/10.1016/j.ympev.2015.01.007
  28. Wan, X., Liu, Y., Zhang, B., 2012. Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region: two main invasion routes. PLoS One 7, e36176. https://doi.org/10.1371/journal.pone.0036176
  29. Wu, Z.Z., Li, H.M., Bin, S.Y., Ma, J., He, H.L., Li, X.F., Gong, F.L., Lin, J.T., 2014. Sequence analysis of mitochondrial ND1 gene can reveal the genetic structure and origin of Bactrocera dorsalis s.s. BMC Evol. Biol. 14, 55. https://doi.org/10.1186/1471-2148-14-55