Fig. 1. The daily fecundity of Riptortus pedestris at different constant temperatures.
Fig. 2. The daily hatchability (%) of Riptortus pedestris at different constant temperatures.
Fig. 3. Important components of oviposition model on Riptortus pedestris using total eggs.
Fig. 4. Important components of oviposition model on Riptortus pedestris using viable eggs.
Fig. 5. Simulated oviposition density curves of Riptortus pedestris related to temperatures (℃) and cohort age.
Table 1. Female longevity, fecundity (total eggs and viable eggs) and hatchability (%) (mean ± SE) of Riptortus pedestris at different temperatures
Table 2. Estimated parameter values for the adult aging rate and age-specific survival rate models of Riptortus pedestris
Table 3. Estimated parameter values for the age-specific cumulative oviposition rate and temperature dependent total fecundity models of Riptortus pedestris
Table 4. Life table parameters of Riptortus pedestris at six different constant temperatures using viable eggs
Table 5. Life table parameters of Riptortus pedestris at six different constant temperatures using total eggs
References
- Ahn, J.J., Choi, K.S., Koh, S., 2019. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74. https://doi.org/10.1007/s13355-018-0593-5
- Awmack, C.S., Leather, S.R., 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844. https://doi.org/10.1146/annurev.ento.47.091201.145300
- Baki, A.A., Jung, J.K., Maharjan, R., Yi, H., Ahn, J.J., Gu, X., Kim, Y., 2018. Application of insulin signaling to predict insect growth rate in Maruca vitrata (Lepidoptera: Crambidae). PLos One 13, e0204935. https://doi.org/10.1371/journal.pone.0204935
- Berger, D., Walters, R., Gotthard, K., 2008. What limits insect fecundity? Body size and temperature-dependent egg maturation and oviposition in a butterfly. Funct. Ecol. 22, 523-529. https://doi.org/10.1111/j.1365-2435.2008.01392.x
- Bochdanovits, Z., de Jong G., 2003. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes. Evolution 57, 1829-1836. https://doi.org/10.1111/j.0014-3820.2003.tb00590.x
- Cho, J.R., Kim, J.-H., Choi, B.-R., Seo, B.-Y., Kim, K.-H., Woo, J.C., Park, C.-G., Ahn, J.J., 2018. Thermal effects on the development, fecundity and life table parameters of Aphis craccivora Koch (Hemiptera: Aphididae) on yardlong bean (Vigna unguiculata subsp. sesquipedalis (L.)). Korean J. Appl. Entomol. 57, 261-269. https://doi.org/10.5656/KSAE.2018.08.0.025
- Huey, R.B., Berrigan, D., 2001. Temperature, demography and ectotherm fitness. Am. Entomol. 158, 204-210.
- Jandel Scientific, 1994. TableCurve User's Manual San Rafael, CA.
- Jha, R.K., Chi, H., Tang, L.-C., 2012. Effects of survival rate and fecundity on the intrinsic rate of increase of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Formosan Entomol. 32, 223-235.
- Kim, D.-S., Lee, J.-H., 2010. A population model for the peach fruit moth, Carposina sasakii Matsumaur (Lepidoptera: Carposinidae) in a Korean orchard system. Ecol. Modell. 221, 268-280. https://doi.org/10.1016/j.ecolmodel.2009.10.006
- Kim, D.-S., Lee, J.-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Modell. 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
- Kim, H., Baek S., Lee, J.-H., 2018. Temperature-dependent development and oviposition models of Leptocorisa chinensis Dallas (Hemiptera: Alydidae). J. Asia-Pac. Entomol. 21, 244-251. https://doi.org/10.1016/j.aspen.2017.12.006
- Kim, H., Baek, S., Kim, S., Lee, S.-Y., Lee, J.-H., 2009. Temperaturedependent development and oviposition models of Riptortus clavatus (Thunberg) (Hemiptera: Alydidae). Appl. Entomol. Zool. 44, 515-523. https://doi.org/10.1303/aez.2009.515
- Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
- Lee, H., Jung, J.-K., Im, J.S., Park, M., Lee, S., Lee, J.-H., 2015. Predicting the occurrence of generation for Riptortus pedestris (Fabricius) using their body color. Korean J. Appl. Entomol. 54, 431-435. https://doi.org/10.5656/KSAE.2015.11.0.072
- Lee, J., Baek, S., Kang, C., Lee, Y.S., Lee, Y., Lee, J.-H., 2018. Temperature-dependent development and oviposition models of Ramulus irregulariterdentatus (Phasmida: Phasmatidae). J. Asia-Pac. Entomol. 21, 903-913. https://doi.org/10.1016/j.aspen.2018.07.003
- Lee, Y.S., Baek, S., Lee, J., Lee, H.A., Lee, J.-H., 2018. Temperaturedependent development and oviposition models of Illeis koebelei (Coleoptera: Coccinellidae). J. Asia-Pac. Entomol. 21, 984-993. https://doi.org/10.1016/j.aspen.2018.07.011
- Maia, A.H.N., Luiz, A.J.B., Campanhola, C., 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. J. Econ. Entomol. 93, 511-518. https://doi.org/10.1603/0022-0493-93.2.511
- Meyer, J.S., Ingersoll, C.G., McDonald, L.L., Boyce, M.S., 1986. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 67, 1156-1166. https://doi.org/10.2307/1938671
- Mou, D.-F., Lee, C.-C., Smith, C.L., Chi, H., 2015. Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiate (Coleoptera: Coccinellidae). J. Appl. Entomol. 139, 579-291. https://doi.org/10.1111/jen.12202
- Park, C.-G., Park, H.-H., Seo, B.-Y., 2017. Temperature-dependent oviposition model and life table parameters of Parominus exiguous (Distant) (Hemiptear: Lygaeidae) growing on rice. Korean J. Appl. Entomol. 56, 387-394. https://doi.org/10.5656/KSAE.2017.11.0.032
- Park, C.-G., Yum, K.-H., Lee, S.-K., Lee, S.-G., 2015. Construction and evaluation of cohort based model for predicting population dynamics of Riptortus pedestris (Fabricicus) (Hemiptera: Alydidae) using Dymex. Korean J. Appl. Entomol. 54, 73-81. https://doi.org/10.5656/KSAE.2015.03.0.007
- Park, J.-J., Mo, H.-H., Lee, D.-H., Shin, K.-I., Cho, K., 2012. Modelling and validation of population dynamics of the American serpentine leafminer (Liriomyza trifolii) using leaf surface temperatures of greenhouses cherry tomatoes. Korea J. Appl. Entomol. 51, 235-243. https://doi.org/10.5656/KSAE.2012.06.0.013
- Pinder III, J.E., Wiener, J.G., Smith, M.H., 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59, 175-179. https://doi.org/10.2307/1936645
- Roy, S., Saha, T.T., Zou, Z., Raikhel, A.S., 2018. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489-511. https://doi.org/10.1146/annurev-ento-020117-043258
- SAS Institute. 2002. SAS user's guide; statistics version 9.1ed. SAS Institute, Cary, NC.
- Saska, P., Skuhrovec, J., Lukas, J., Vlach, M., Chi, H., Tuan, S.-J., Honek, A., 2017. Treating prey with glyphosate does not alter the demographic parameters and predation of the Harmonia axyridis (Coleoptera: Coccinellidae). J. Econ. Entomol. 110, 392-399.
- Schowalte, T.D. 2011. Insect ecology: An ecosystem approach, 3rd ed., Academic Press. CA.
- Sugawara, R., Ullah, M. S., Ho, C.-C., Gokce, A., Chi, H., Gotoh, T., 2017. Temperature-dependent demography of two closely related predatory mites Neoseiulus womersleyi and N. longispinosus (Acari: Phytoseiidae). J. Econ. Entomol. 110, 1533-1546. https://doi.org/10.1093/jee/tox177
- Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, B.N., 1984. Modeling insect development rates: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225. https://doi.org/10.1093/aesa/77.2.208
- Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297. https://doi.org/10.1115/1.4010337