Fig. 1. Primary form of X. ehlersii KSY.
Fig. 2. Immunosuppression activity of X. ehlersii against hemocyte-spreading behavior of P. xylostella larvae. Hemocytes were collected from fourth intar larvae and incubated with X. ehlersii -cultured broth (Xe). For control, hemocytes were incubated in 10 μL TC-100. For treatments hemocyte in 9 μL TC-100 were incubated with 1 μL of Xe or TSB. For rescue experiment, 8 μL hemocyte suspension are incubated with 1 μL of Xe and 1 μL of arachidonic acid (AA, 100mM). Hemocyte-spreading assay followed the method described in materials and method. Each treatment are replicated three times.
Fig. 3. Enhanced insecticidal activity of B. thuringiensis kurstaki (Btk) against P. xylostella larvae by addition of X. ehlersii-cultured broth (Xe). Forth instar larvae were treated with Btk (30 ppm) by a leaf-dipping method. Xe was obtained by 48 h culture and the bacterial suspension are used to prepare Btk (30 ppm) suspension (Btk+Xe). Each treatment used 10 larvae and are replicated three times. Asterisks indicate complete difference between Btk and Btk+Xe treatment at Type 1 error = 0.05 (LSD test).
Fig. 4. Effect of bacterial mixture treatment on control efficacy of M. vitrata larvae. X. ehlersii was cultured in TSB for 48 h and used for preparation of bacterial mixtures with B. thuringiensis kurstaki (BtK) or B. thuringiensis aizawaii (BtA). (A) Mixture effect of X. ehlersii and BtK (B) Mixture effect of X. ehlersii and BtA. The bacterial mixtures were treated to fourth instar larvae at M. vitrata by a dipping method. For reference, BtK or BtA alone was treated. Each treatment used 10 larvae and replicated three times.
Fig. 5. Semi-field test of a bacterial mixture (XeBt) of B. thuringiensis kurstaki (Btk) and X. ehlersii (Xe) against P. xylostella larvae infesting cabbages cultivated in pots. Btk (30 ppm) was mixed in Xe-cultured broth to prepare XeBt. XeBt was sprayed against the cabbages after counting initial numbers per experimental unit (= a cabbage plant). Each experiment unit had more than 30 individuals (mostly 3rd to 4th instar larvae). Each treatment are replicated three times. (A) Survival rates at different time points after bacterial treatment. (B) Host damage analysis induced by P. xylostella larval feeding behavior. Damage intensities (%) are calculated by scoring damage rate (0: less than 5% feeding damage, 1: 5~10% feeding damage, 2: 10~15% feeding damage, 3: over 15% feeding damage) using a following formular: Damage Intensity (%) ={Σ (Number of damage leave × damage rate)}/(Number of total test leaves) × 100.
References
- Ahmed, S., Kim, Y., 2019. An aquaporin mediates cell shape change required for cellular immunity in the beet armyworm, Spodoptera exigua. Sci. Rep. In Press.
-
Ahmed, S., Stanley, D., Kim, Y., 2018. An insect prostaglandin
$E_2$ synthase acts in immunity and reproduction. Front. Physiol. 9, 1231. https://doi.org/10.3389/fphys.2018.01231 - Akhurst, R.J., 1980. Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoplectana and Heterorhabditis. J. Gen. Microbiol. 121, 303-309.
- Baines, D., Downer, R.G., 1994. Octopamine enhances phagocytosis in cockroach hemocytes: involvement of inositol trisphosphate. Arch. Insect Biochem. Physiol. 26, 249-261. https://doi.org/10.1002/arch.940260402
- Berry, C., Crickmore, N., 2017. Structural classification of insecticidal proteins - towards an in silico characterisation of novel toxins. J. Invertebr. Pathol. 142, 16-22. https://doi.org/10.1016/j.jip.2016.07.015
- Bode, H.B., 2009. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13, 224-230. https://doi.org/10.1016/j.cbpa.2009.02.037
- Boemare, N.E., Akhurst, R.J., Mourant, R.G., 1993. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol. 43, 249-255. https://doi.org/10.1099/00207713-43-2-249
- Bravo, A., Likitvivatanavong, S., Gill, S.S., Soberon, M., 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
- Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. https://doi.org/10.1073/pnas.0604865103
- Campos-Herrera, R., Barbercheck, M., Hoy, C.W., Stock, S.S., 2012. Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. J. Nematol. 42, 162-176.
- Clark, K.D., Pech, L.L., Strand, M.R., 1997. Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272, 23440-23447 https://doi.org/10.1074/jbc.272.37.23440
- Corey, E.J., Albright, J.O., Barton, A.E., Hashimoto, S., 1980. Chemical and enzymic syntheses of 5-HPETE, a key biological precursor of slow-reacting substance of anaphylaxis (SRS) and 5-HETE. J. Am. Chem. Soc. 102, 1435-1436. https://doi.org/10.1021/ja00524a044
- Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Dean, D.H., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813. https://doi.org/10.1128/MMBR.62.3.807-813.1998
- Dowds, B.C.A., Peters, A., 2002. Entomopathogenic nematology, In: Gaugler, R. (Ed.), Virulence Mechanisms. CABI, New York, pp. 79-98.
- Eom, S., Park, Y., Kim, H., Kim, Y., 2014b. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521. https://doi.org/10.4014/jmb.1310.10116
- Eom, S., Park, Y., Kim, Y., 2014a. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium Xenorhabdus nematophila. J. Microbiol. 52, 161-168. https://doi.org/10.1007/s12275-014-3251-9
- ffrench-Constant, R., Waterfield, N., Daborn, P., Joyce, S., Bennett, H., Au, C., Dowling, A., Boundy, S., Reynolds, S., Clarke, D., 2003. Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol. Rev. 26, 433-456. https://doi.org/10.1111/j.1574-6976.2003.tb00625.x
- Forst, S., Clarke, D., 2002. Bacteria-nematode symbiosis, In: Gaugler, R. (Ed.), Entomopathogenic Nematology. CABI, New Brunswick, New Jersey, pp. 57-78.
- Furlong, M.J., Wright, D.J., Dosdall, L.M., 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annu. Rev. Entomol. 58, 517-541. https://doi.org/10.1146/annurev-ento-120811-153605
- Gatsogiannis, C., Lang, A.E., Meusch, D., Pfaumann, V., Hofnagel, O., Benz, R., Aktories, K., Raunser, S., 2013. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495, 520-523. https://doi.org/10.1038/nature11987
- Gaugler, R., 2002. Entomopathogenic Nematology. CABI Publishing, Wallingford, UK.
- Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611-643. https://doi.org/10.1146/annurev.ento.42.1.611
- Godjo, A., Afouda, L., Baimey, H., Decraemer, W., Willems, A., 2018. Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin. Arch. Microbiol. 200, 589-601. https://doi.org/10.1007/s00203-017-1470-2
- Grizanova, E.V., Dubovskiy, I.M., Whitten, M.M., Glupov, V.V., 2014. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119, 40-46. https://doi.org/10.1016/j.jip.2014.04.003
- Ishii, K., Adachi, T., Hamamoto, H., Oonishi, T., Kamimura, M., Imamura, K., Sekimizu, K., 2013. Insect cytokine paralytic peptide activates innate immunity via nitric oxide production in the silkworm Bombyx mori. Dev. Comp. Immunol. 39, 147-153. https://doi.org/10.1016/j.dci.2012.10.014
- Ji, D., Yi, Y., Kim, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239, 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
- Jung, J.K., Seo, B.-Y., Park, J.H., Moon, J.-K., Choi, B.-S., Lee, Y.-H., 2007. Developmental characteristics of soybean podworm, Matsumuraeses phaseoli (Lepidoptera: Tortricidae) and legume pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on semi-synthetic artificial diets. Korean J. Appl. Entomol. 46, 393-399. https://doi.org/10.5656/KSAE.2007.46.3.393
- Kim, H., Keum, S., Hasan, A., Kim, H., Jung, Y., Lee, D., Kim, Y., 2018b. Identification of an entomopathogenic bacterium, Xenorhabdus ehlersii KSY, from Steinernema longicaudum GNUS101 and its immunosuppressive activity against insect host by inhibiting eicosanoid biosynthesis. J. Invertebr. Pathol. 159, 6-17. https://doi.org/10.1016/j.jip.2018.10.014
- Kim, Y., Ahmed, S., Stanley, D., An, C., 2018a. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143. https://doi.org/10.1016/j.dci.2017.12.005
-
Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase
$A_2$ to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264. https://doi.org/10.1016/j.jip.2005.05.001 - Kim, Y., Kim, K., Kim, H., Park, Y., Kim, G.H., 2013. An integrated biological control using an endoparasitoid wasp (Cotesia plutellae) and a microbial insecticide (Bacillus thuringiensis) against the diamondback moth, Plutella xylostella. Korean J. Appl. Entomol. 52, 35-43. https://doi.org/10.5656/KSAE.2013.01.1.080
- Kim, Y., Sadekuzzaman, M., Kim, M., Kim, K., Park, Y., Jung, J.K., 2016. Genetic character and insecticide susceptibility on a Korean population of a subtropical species, Maruca vitrata. Korean J. Appl. Entomol. 55, 257-266. https://doi.org/10.5656/KSAE.2016.06.0.024
- Lavine, M.D., Strand, M.D., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309. https://doi.org/10.1016/S0965-1748(02)00092-9
- Nalini, M., Kim, Y., 2007. A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J. Insect Physiol. 53, 1283-1292. https://doi.org/10.1016/j.jinsphys.2007.07.004
- Park, J., Stanley, D., Kim, Y., 2013. Rac1 mediates cytokinestimulated hemocyte spreading via prostaglandin biosynthesis in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 59, 682-689. https://doi.org/10.1016/j.jinsphys.2013.04.012
- Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
-
Sadekuzzaman, M., Stanley, D., Kim, Y., 2018. Nitric oxide mediates insect cellular immunity via phospholipase
$A_2$ activation. J. Innate Immun. 10, 70-81. https://doi.org/10.1159/000481524 -
Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase
$A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12 - Shi, Y.M., Bode, H.B., 2018. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat. Prod. Rep. 35, 309-335. https://doi.org/10.1039/C7NP00054E
-
Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase
$A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782. https://doi.org/10.1007/s12275-009-0145-3 - Stanley, D.W., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton, New Jersey, NY.
- Stanley, D.W., Kim, Y., 2014. Eicosanoid signaling in insects: from discovery to plant protection. Crit. Rev. Plant Sci. 33, 20-63. https://doi.org/10.1080/07352689.2014.847631
- Stock, S.P., Goodrich-Blair, H., 2008. Entomopathogenic nematodes and their bacterial symbionts: the inside out of a mutualistic association. Symbiosis 46, 65-76.
- Sung, E.J., Ryuda, M., Matsumoto, H., Uryu, O., Ochiai, M., Cook, M.E., Yi, N.Y., Wang, H., Putney, J.W., Bird, G.S., Shears, S.B., Hayakawa, Y., 2017. Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress. Proc. Natl. Acad. Sci. USA 114, 13786-13791. https://doi.org/10.1073/pnas.1712453115
- Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785. https://doi.org/10.1073/pnas.94.24.12780
- Talekar, N.S., Shelton, A.M., 1993. Biology, ecology and management of the diamondback moth. Annu. Rev. Entomol. 38, 275-301. https://doi.org/10.1146/annurev.en.38.010193.001423
- Waterfield, N.R., Ciche, T., Clarke, D., 2009. Photorhabdus and a host of hosts. Annu. Rev. Microbiol. 63, 557-574. https://doi.org/10.1146/annurev.micro.091208.073507
- Wu, G., Yi, Y., 2018. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Mol. Immunol. 103, 220-228. https://doi.org/10.1016/j.molimm.2018.10.006
- Xu, J., Morisseau, C., Yang, J., Lee, K.S., Kamita, S.G., Hammock, B.D., 2016. Ingestion of the epoxide hydrolase inhibitor AUDA modulates immune responses of the mosquito, Culex quinquefasciatus during blood feeding. Insect Biochem. Mol. Biol. 76, 62-69. https://doi.org/10.1016/j.ibmb.2016.06.011
- Yooyangket, T., Muangpat, P., Polseela, R., Tandhavanant, S., Thanwisai, A., Vitta, A., 2018. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. PLoS One. 13, e0195681. https://doi.org/10.1371/journal.pone.0195681