DOI QR코드

DOI QR Code

Connectivity Assessment Based on Circuit Theory for Suggestion of Ecological Corridor

생태축 제안을 위한 회로 이론 기초 연결성 평가

  • Received : 2019.03.25
  • Accepted : 2019.05.07
  • Published : 2019.06.30

Abstract

In order to prevent local extinction of organisms and to preserve biodiversity, it is important to ensure connectivity between habitats. Even if the habitat is exposed to various disturbance factors, it is possible to avoid or respond to disturbances if they are linked to other habitats. Habitat connectivity can be assessed from a variety of perspectives, but the importance of functional connectivity based on species movement has been emphasized in recent years due to the development of computational capabilities and related software. Among them, Circuitscape, which is a connectivity evaluation tool, has an advantage it can provide detailed reference data for the city planning because it maps ecological flows on individual grid based on circuit theory. Therefore, in this study, the functional connectivity of Suwon was evaluated by applying Circuitscape and then, the ecological corridor to be conserved and supplemented was suggested based on it. The results of this study are expected to effectively complement the methodology related ecological corridor/axis, which was previously provided only in the form of a diagram, and to be effective in management of development project and urban planning.

생물의 국지적 멸종을 방지하고 생물 다양성을 보전하기 위해서는 서식처 간 연결성을 확보하는 것이 중요하다. 서식처가 다양한 교란요인에 노출되더라도 다른 서식처와 연결되어 있으면 종이 교란에 회피하거나 대응하는 것이 가능하기 때문이다. 서식처 연결성은 다양한 관점에서 평가될 수 있으나 최근 컴퓨터 연산능력과 관련 소프트웨어의 발달로 인해 종의 움직임에 기초하는 기능적 연결성의 중요성이 강조되고 있다. 따라서 본 연구에서는 각종 개발사업으로 서식처 파편화가 발생하는 수원시를 대상으로, 종의 이동량을 연결되는 모든 격자에 맵핑할 수 있는 써킷스케이프(circuitscape)를 적용하여 연결성을 평가하였다. 또한, 이에 기초하여 종의 이동이 상대적으로 집중되는 지역을 수원시에서 우선 보전해야 할 생태축으로 제안하고, 2018년도 토지피복과 식생활력도(NDVI)와 비교함으로써 관리의 필요성을 제시하였다. 본 연구결과는 기존에 개념도의 형태로만 제공되었던 생태축 부문을 효과적으로 보완하고, 실제 개발사업 관리 및 도시계획에서의 실효성을 확보할 수 있을 것으로 기대한다.

Keywords

HOPHBL_2019_v28n3_275_f0002.png 이미지

Figure 1. Research Flow.

HOPHBL_2019_v28n3_275_f0003.png 이미지

Figure 2. Study area: Suwon.

HOPHBL_2019_v28n3_275_f0004.png 이미지

Figure 3. Land cover of analysis extent (A) and resistance value (B): resistance values according to land cover were resampled into format of 100m grid considering the proportion of land cover within individual grid.

HOPHBL_2019_v28n3_275_f0006.png 이미지

Figure 4. Difference between circuit theory based method (a, b) and least-cost based method (c, d). The path with no alterative is represented as channel in figure 4b.

HOPHBL_2019_v28n3_275_f0007.png 이미지

Figure 5. Moving window for analyzing of sections A-L.

HOPHBL_2019_v28n3_275_f0008.png 이미지

Figure 6. Result of circuitscape (A) and graded connectivity (B).

HOPHBL_2019_v28n3_275_f0009.png 이미지

Figure 7. Land cover and connectivity (Zoom in, referring to Figure 7B).

HOPHBL_2019_v28n3_275_f0010.png 이미지

Figure 8. NDVI distribution and connectivity (referring to Figure 6B).

Table 1. Input dataset

HOPHBL_2019_v28n3_275_t0001.png 이미지

Table 2. Resistance values according to land cover in analysis extent

HOPHBL_2019_v28n3_275_t0002.png 이미지

References

  1. Ahn Y, Lee DK, Kim H, Mo Y. 2014. Applying connectivity analysis for prioritizing unexecuted urban parks in Sungnam. J. Korean Env. Res. Tech. 17(3): 75-86. [Korean Literature]
  2. Cushman SA. 2006. Effects of habitat loss and fragmentation on amphibians: A review and propectus. Biological conservation. 128(2): 231-240. https://doi.org/10.1016/j.biocon.2005.09.031
  3. Desrochers A, Belisle M, Morand-Ferron J, Bourque J. 2011. Integrating GIS and homing experiments to study avian movement costs. Landscape Ecology. 26: 47-58. https://doi.org/10.1007/s10980-010-9532-8
  4. Jeon SW, Chun JY, Seong HC, Song WK, Park JH. 2010. A study on the setting criteria and management area for the national ecological network. J. Korean Env. Res. Tech. 13(5): 154-171. [Korean Literature]
  5. Kang WM, Song YK, Sung HC, Lee DK. 2018. Assessing conservation priorities of unexectued urban parks in Seoul using ecological network and accessibility analysis. J. Korean Env. Res. Tech. 21(2): 53-64. [Korean Literature]
  6. Kim G, Kong SJ, Kim MK, LEE MJ, Song J, Jeon SW. 2014. Method of Devleoping the regional ecological network for local government using the national ecological network and the environmental conservation value assessment map. Environmental Policy Research. 13(3): 3-19. [Korean Literature]
  7. Kim E, Song W, Lee DK. 2012. Forest fragmentation and its impacts: a review. Korean Env. Res. Tech. 15(2): 149-162. [Korean Literature]
  8. Koen EL, Bowman J, Sadowski C, Walpole AA. 2014. Landscape connectivity for wildlife: development and validation of multispecies linkage maps. Methods in Ecology and Evolution 5(7): 626-633. https://doi.org/10.1111/2041-210X.12197
  9. Lee DK, Song WK, Jeon SW. 2008. Regional ecological network design for wild animals movement using landscape permeability and least-cost path methods in the metropolitan area of korea. Korean Env. Res & Reveg. Tech. 11(3): 94-105. [Korean Literature]
  10. Li F, Wang R, Paulussen J, Liu X. 2005. Comprehensive concept planning of urban greening based on ecological principles: A case study in Beijing, China. Landscape and Urban Planning. 72(4):324-336.
  11. McRae BH, Popper K, Jones A, Schindel M, Buttrick S, Hall K, Unnasch RS, Platt J. 2016. Conserving Nature's Stage: Mapping Omnidirectional Connectivity for Resilient Terrestrial Landscapes in the Pacific Northwest. The Nature Conservancy, Portland Oregon.
  12. McRae BH, Dickson BG, Keitt TH, Shah VB. 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology. 89(10): 2712-2724. https://doi.org/10.1890/07-1861.1
  13. Pelletier D, Clark M, Anderson MG, Rayfield B, Wulder MA, Cardille JA. 2014. Applying circuit theory for corridor expansion and management at regional scales: Tiling, pinch points, and omnidirectional connectivity. PLos ONE. 9(1): E84135. https://doi.org/10.1371/journal.pone.0084135
  14. Rayfield B, Pelletier D, Dumitru M, Cardille JA, Gonzalez A. 2016. Multipurpose habitat networks for short-range and long-range connectivity: A new method combining graph and circuit connectivity. Methods in Ecology and Evolution. 7(2): 222-231. https://doi.org/10.1111/2041-210X.12470
  15. Rayfield B, Fortin M, Fall A. 2011. Connectivity for conservation: a framework to classify network measures. Ecology. 92(4): 847-858. https://doi.org/10.1890/09-2190.1
  16. Sawyer SC, Epps CW, Brashares JS. 2011. Placing linkages among fragmented habitats: Do least-cost models reflect how animals use landscape? Journal of Applied Ecology. 38(3): 668-678. https://doi.org/10.1111/j.1365-2664.2011.01970.x
  17. Song W, Kim E, Lee DK. 2012. Measuring connectivity in heterogenous landscapes: a review and application. J. Korean Env. Res. Tech. 21(3): 391-407. [Korean Literature]
  18. Yoon EJ, Song EJ, Jeung YH, Kim EY, Lee DK. 2018. Spatial Decision Support Systems for Development and Conservation of Unexecuted Urban Park using ACO. J. Korean Env. Res. Tech. 21(2): 39-51. [Korean Literature]
  19. Zhang Z, Meerow S, Newell JP, Lindquist M. 2019. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry and Urban Greening. 38: 305-317. https://doi.org/10.1016/j.ufug.2018.10.014

Cited by

  1. Modelling Dynamic Hydrological Connectivity in the Zoigê Area (China) Based on Multi-Temporal Surface Water Observation vol.14, pp.1, 2019, https://doi.org/10.3390/rs14010145