Fig. 1. Configuration of multi-stage burner for fuel reforming plant
Fig. 2. ASPEN plus model for multi-stage burner
Fig. 3. MeOH mole flow rate (kmol/h) at each mixer as function of H2O feed rate (kmol/h) at mixer#1
Fig. 4. O2 mole flow rate (kmol/h) at each mixer as function of H2O feed rate (kmol/h) at mixer#1
Fig. 5. CO2 mole flow rate (kmol/h) at each mixer as function of H2O feed rate (kmol/h) at mixer#1
Fig. 7. Exhaust gas temperature at burner#6 as function of H2O feed rate (kmol/h) at mixer#1
Fig. 6. H2O mole flow rate (kmol/h) at each mixer as function of H2O feed rate (kmol/h) at mixer#1
Fig. 8. H2O temperature at each HEX as function of H2O feed rate (kmol/h) at mixer#1
Table 1. Simulation condition for multi-stage burner
References
- A. Psoma and G. Sattler, "Fuel cell systems for submarines: from the first idea to serial production", Journal of Power Sources, Vol. 106, No. 1-2, 2002, pp. 381-383, doi: https://doi.org/10.1016/S0378-7753(01)01044-8.
- S. Krummrich and J. Llabres, "Methanol reformer - The next milestone for fuel cell powered submarines", International Journal of Hydrogen Energy, Vol. 40, No. 15, 2015, pp. 5482-5486, doi: https://doi.org/10.1016/j.ijhydene.2015.01.179.
- "HDW, SENER develop methanol reformer for fuel cell-submarines", Fuel Cells Bulletin, Vol. 2012, No. 12, 2012, p. 2, doi: https://doi.org/10.1016/S1464-2859(12)70342-5.
- "UTC Power to develop fuel cell for Spanish sub", Fuel Cells Bulletin, Vol. 2008, No. 1, 2008, p. 4, doi: https://doi.org/10.1016/S1464-2859(08)70009-9.
- S. Springmann, M. Bohnet, A. Docter, A. Lamm, and G. Eigenberger, "Cold start simulations of a gasoline based fuel processor for mobile fuel cell applications", Journal of Power Sources, Vol. 128, No. 1, 2004, pp. 13-24, doi: https://doi.org/10.1016/j.jpowsour.2003.09.038.
- S. G. Goebel, D.P. Miller, W. H. Pettit, and M.D. Cartwright, "Fast starting fuel processor for automotive fuel cell systems", International Journal of Hydrogen Energy, Vol. 30, No. 9, 2005, pp. 953-962, doi: https://doi.org/10.1016/j.ijhydene.2005.01.003.
- M. Maximini, P. Engelhardt, M. Brenner, F. Beckmann, and O. Moritz, "Fast start-up of a diesel fuel processor for PEM fuel cells", International Journal of Hydrogen Energy, Vol. 39, No. 31, 2014, pp. 18154-18163, doi: https://doi.org/10.1016/j.ijhydene.2014.02.168.
- H. Ji, J. Bae, S. Cho, and I. Kang, "Start-up strategy and operational tests of gasoline fuel processor for auxiliary power unit", International Journal of Hydrogen Energy, Vol. 40, No. 11, 2015, pp. 4101-4110, doi: https://doi.org/10.1016/j.ijhydene.2015.01.157.
- H. Ji and S. Cho, "Steam-to-carbon ratio control strategy for start-up and operation of a fuel processor", International Journal of Hydrogen Energy, Vol. 42, No. 15, 2017, pp. 9696-9706, doi: https://doi.org/10.1016/j.ijhydene.2017.01.153.
- R. C. Samsun, M. Prawitz, A. Tschauder, J. Pasel, P. Pfeifer, R. Peters, and D. Stolten, "An integrated diesel fuel processing system with thermal start-up for fuel cells", Applied Energy, Vol. 226, 2018, pp. 145-159, doi: https://doi.org/10.1016/j.apenergy.2018.05.116.
- H. Ji, J. Lee, E. Choi, and I. Seo, "Hydrogen production from steam reforming using an indirect heating method", International Journal of Hydrogen Energy, Vol. 43, No. 7, 2018, pp. 3655-3663, doi: https://doi.org/10.1016/j.ijhydene.2017.12.137.
- U. Cheon, K. Ahn, and H. Shin, "Study on the characteristics of methanol steam reformer using latent heat of steam", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 1, 2018, pp. 19-24, doi: https://doi.org/10.7316/KHNES.2018.29.1.19.
- H. Ji, E. Choi, and J. Lee, "Optimal operation condition of pressurized methanol fuel processor for underwater environment", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 5, 2016, pp. 485-493, doi: http://dx.doi.org/10.7316/KHNES.2016.27.5.485.
-
S. Rupesh, C. Muraleedharan, and P. Arun, "ASPEN plus modelling of air-steam gasification of biomass with sorbent enabled
$CO_2$ capture", Resource-Efficient Technologies, Vol. 2, No. 2, 2016, pp. 94-103, doi: https://doi.org/10.1016/j.reffit.2016.07.002.