• Title/Summary/Keyword: Fuel reforming plant

Search Result 20, Processing Time 0.035 seconds

Start-up Strategy of Multi-Stage Burner for Methanol Fuel Reforming Plant (메탄올 연료 개질 플랜트의 다단연소기 시동 전략)

  • JI, HYUNJIN;BAIK, KYUNGDON;YANG, SUNGHO;JUNG, SEUNGKYO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.201-208
    • /
    • 2019
  • Recently, a fuel reforming plant for supplying high purity hydrogen is being applied to submarines. Since steam reforming is an endothermic reaction, it is necessary to continuously supply heat to the reactor. A fuel reforming plant for a submarine needs a multi-stage burner (MSB) to acquire heat and convert the combustion gas to $CO_2+H_2O$. The MSB has problems that the combustion imbalance occurs during start-up due to the temperature restriction of the combustion gas. This problems can be solved by burning $H_2O$ together with fuel and $O_2$. In this study, the simulation results of MSB were analyzed to determine the optimum flow rate of $H_2O$ supplied to the 6-stage burner. When the flow rate of $H_2O$ was low, combustion was concentrated on the burner#6 in comparison with the burner#1-#5. This combustion concentration improved as the supply amount of $H_2O$ increased. As a results, it was necessary to supply at least 4.9 kmol/h of $H_2O$ (per 1 kmol/h of fuel) to burner#1 in order to maintain the combustion gas temperature of each stage at $750^{\circ}C$ and to convert the final stage burner gas composition to $CO_2+H_2O$.

Characteristics of Methanol-O2 Catalytic Burner according to Oxidant Supply Method (산화제 공급 방법에 따른 메탄올-산소 촉매연소기 특성)

  • JI, HYUNJIN;LEE, JUNGHUN;CHOI, EUNYEONG;YANG, SUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.82-88
    • /
    • 2020
  • Recently, a fuel reforming plant for supplying high purity hydrogen has been studied to increase the operation time of underwater weapon systems. Since steam reforming is an endothermic reaction, it is necessary to continuously supply heat to the reactor. A fuel reforming plant needs a methanol-O2 catalytic burner to obtain heat and supply heat to the reformer. In this study, two types of designs of a catalytic burner are presented and the results are analyzed through the experiments. The design of the catalytic burner is divided into that the O2 supply direction is perpendicular to the methanol flow direction (Design 1) and the same as the methanol flow direction (Design 2). In case of Design 1, backfire and flame combustion occurred in the mixing space in front of the catalyst, and in the absence of the mixing space, combustion reaction occurred only in a part of the catalyst. For above reasons, Design 1 could not increase the exhaust gas temperature to 750℃. In Design 2, no flashback and flame combustion were observed, the exhaust gas could be maintained up to 750℃. However, the O2 distributor was exposed to high temperatures, resulting in thermal damage.

The Results of the 125 kW External Reforming Type MCFC Stack Operation (125kW 외부개질 용융탄산염 연료전지(ER MCFC) 스택 운전)

  • Lee, Jung-Hyun;Kim, Beom-Joo;Kim, Do-Hyeong;Kang, Seung-Won;Kim, Eui-Hwan;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.419-424
    • /
    • 2010
  • The 125kW external reforming (ER) type molten carbonate fuel cell (MCFC) system for developing a commercial prototype has been operated at Boryeong thermal power plant site since the end of 2009. The system consists of 125kW stack with $10,000 cm^2$ effective area, mechanical balance of plant (MBOP) with anode recycle system, and electrical balance of plant (EBOP). The 125kW MCFC stack installed in December, 2009 has been operated from January, 2010 after 20 days pre-treatment. The stack open circuit voltage (OCV) was 214V at initial load operation, which approaches the thermodynamically theoretical voltage. The stack voltage remained stable range from 160V to 180V at the maximum generating power of 120 kW DC. The stack has been operated for 3,270 hours and operated at rated power for 1,200 hours.

Technical Trends of Hydrogen Manufacture, Storage and Transportation System for Fuel Cell Vehicle (연료전지자동차용 수소제조와 저장·운반기술동향)

  • Kil, Sang-Cheol;Hwang, Young-Gil
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2016
  • The earth has been warming due to $CO_2$ gas emissions from fossil fuel cars and a ship. So the hydrogen fuel cell vehicle(FCV) using hydrogen as a fossil fuel alternative energy is in the spotlight. Hyundai Motor Company of Korea and a car companies of the US, Japan, Germany is developing a FCV a competitive. Obtained hydrogen as a by-product of the coke plant, oil refineries, chemical plants of steel mill, coal is reacted with steam at high temperatures, methane gas, manufacture of high purity hydrogen Methane Steam Reforming and hydrogen detachable reforming method using the Pressure Swing Adsorption or Membrane Reforming technical or decomposition of water to produce electricity. Hydrogen is the electronic industry, metal and chemical industries, which are used as rocket fuel, etc. are used in factories, hospitals, home of the fuel Ene.Farm system or FCV. And a method of storing hydrogen is to store liquid hydrogen and a method for compressing normal hydrogen to the hydrogen container, by storing the latest hydride or Organic chemical hydride method is used to carry the hydrogen station. Korea is currently 13 hydrogen stations in place and in operation, plans to install a further 43 places.

A dynamic simulation study on SCR (Stream Carbon dioxide Reforming) process for pilot plant operation (파일럿 플랜트 최적운전을 위한 SCR공정 동적 모사)

  • Kim, Yong Heon;Bae, Ji Han;Park, Myoung Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.136.2-136.2
    • /
    • 2011
  • A dynamic simulation study on SCR process in GTL process was carried out in order to find optimum operation conditions for pilot plant operation. Optimum operating conditions for SCR synthesis gas process were determined by changing operation variables such as feed temperature and pressure. It was also assumed that physical properties of reaction medium were governed by RKS (Redlich-Kwong-Soave) equation. The effect of temperature and pressure on synthesis gas process $H_2$/CO ratio were mainly examined. Dynamic simulation results were fed back to feed operation condition for optimizing productivity, especially for appropriate condition to FT (Fischer-Tropsch) synthesis unit.

  • PDF

Steady and Dynamic Modeling of 3MW MCFC System Conceptual Design Using Parameter Interpolation Method (파라미터 보간법을 이용한 3MW급 MCFC 시스템의 정상 및 비정상 상태 설계)

  • Kim, Minki;Cho, Yinjung;Kim, Yunmi;Kang, Minkwan;Lee, Sanghoon;Kim, Jaesig
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.87.2-87.2
    • /
    • 2010
  • The steady and dynamic process model for an internal reforming molten carbonate fuel cell power plant is discussed in this paper. The dominant thermal and chemical dynamic processes are modeled for the stack module and balance-of-plant, including cathode gas preparation, heat recovery, heat loss (Each heat loss amount for the stack and MBOP is obtained from real plant data) and fuel processing. Based on dynamic model and control demand, PID controllers are designed in the whole system. By applying these controllers we can obtain temperature balance of stack and control system depending on changing steam to carbon ratio, air feed amount, and transient condition.

  • PDF

Development Status of the Molten Carbonate Fuel Cell Technology (용융탄산염 연료전지의 기술개발 현황 및 분석)

  • Hong, Seong-Ahn;Nam, Suk Woo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.535-546
    • /
    • 1992
  • The molten carbonate fuel cell(MCFC) has been under Intensive development for the last decade as a second generation fuel cell. The advantages of the MCFC over the phophoric acid fuel cell are higher efficiency, its ability to accept CO and $H_2$ as a fuel, lower material costs, and high operating temperature making internal reforming possible. These features, along with low atmospheric emissions, will open up a significant market as an attractive means of developing highly efficient power plant. This article reviews a status of the MCFC research and development, a principle of the MCFC, and cell and stack technology including the status of electrodes, matrices and electrolytes. Several technical difficulties which must be resolved to be commercialized art mainly focused.

  • PDF

A comparison between fuel cells and other alternatives for marine electric power generation

  • Welaya, Yousri M.A.;Gohary, M. Morsy El;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last halfcentury has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.

Process Technologies of Reforming, Upgrading and Purification of Anaerobic Digestion Gas for Fuel Cells (연료전지에의 적용을 위한 혐기성 소화가스의 정제, 고질화 및 메탄개질 기술)

  • BAE, MINSOO;LEE, JONGYEON;LEE, JONGGYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • Biogas is a renewable fuel from anaerobic digestion of organic matters such as sewage sludge, manure and food waste. Raw biogas consists mainly of methane, carbon dioxide, hydrogen sulfide, and water. Biogas may also contain other impurities such as siloxanes, halogenated hydrocarbons, aromatic hydrocarbons. Efficient power technologies such as fuel cell demand ultra-low concentration of containments in the biogas feed, imposing stringent requirements on fuel purification technology. Biogas is upgraded from pressure swing adsorption after biogas purification process which consists of water, $H_2S$ and siloxane removal. A polymer electrolyte membrane fuel cell power plant is designed to operate on reformate produced from upgraded biogas by steam reformer.

System Development of a 100 kW Molten Carbonate Fuel Cell IV(System commisioning for operation (100 kW급 용융탄산염 연료전지 시스템 개발 IV(MCFC 시스템 시운전))

  • Lim, Hee-Chun;Ahn, Kyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1681-1683
    • /
    • 2005
  • The molten carbonate fuel tell(MCFC) is endowed with the high potential especially in future electric power generation industry by its own outstanding characteristics. KEPCO(KEPRI) started a 100 kW MCFC system development program in 1993 and has been executed 100kW system develpilot plant successfully completed first phaseopment by 2005 on the basis of successful results of 25kW system development. In this program, the components and mechanical structure for 100 kW stack and system construction were completed on last year and now system pre-commissioning was being executed. A 100 kW MCFC power plant was constructed at the site of Boryeong Thermal Power Plant. A 100 kW MCFC system has characterized as a high pressure operation mode, $CO_2$ recycle, and externally reforming power generation system. The 100 kW MCFC system consisted with stacks which was made by two 50 kW sub-stacks, 90 cells with 6,000 cm2 active area and BOP including a reformer, a recycle blower, a catalytic burner, an inverter, and etc. The system will be operated under 3 atm pressure condition and expected to last over 5,000 hours by the end of this year.

  • PDF