DOI QR코드

DOI QR Code

수중 입체촬영을 위한 수면호버링 드론 설계

Design of Water Surface Hovering Drone for Underwater Stereo Photography

  • 김형균 (서울여자대학교 SW교육혁신센터) ;
  • 김용호 (광주대학교 IT자동차학과)
  • Kim, Hyeong-Gyun (Dept. of SW Education Innovation Center, Seoul Women's University) ;
  • Kim, Yong-Ho (Dept. of IT-Automotive Engineering, GwangJu University)
  • 투고 : 2019.05.07
  • 심사 : 2019.06.20
  • 발행 : 2019.06.28

초록

수중촬영을 위해서는 촬영자가 장비를 갖추고 수중으로 진입하여 촬영해야 한다. 촬영자가 직접 수중에 진입하기 때문에 수중에 존재하는 다양한 장애물이나 깊은 수심으로 인해 안전사고가 빈번하게 발생하고 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 수중 입체촬영을 위한 수면호버링 드론에 대해 제안하였다. 레이저 센서를 이용한 수위측정을 통해 드론이 일정 높이의 수면에서 호버링한 상태에서 촬영부만 수중으로 이동시켜 수중상태를 입체로 촬영하는 최적의 기법에 대해 기술하였다. 제안한 수중 입체촬영기법은 수중촬영에 드론을 사용함으로써 촬영자가 직접 수중으로 진입하지 않아도 되기 때문에 안전사고에 대한 문제점을 해결할 수 있으며 저비용으로 수중입체영상을 획득할 수 있는 장점을 갖고 있다. 입체촬영용으로 제안한 캠의 촬영각을 분석하여 적정한 입체영상의 시청이 가능한 조건을 수중 18cm높이에서 바닥면 거리가 41.4cm 일 때로 규정하고 수면호버링 드론의 엘리베이션 체인에 의해 하강하는 촬영부의 높이를 조정하도록 제안하였다.

In order to shoot underwater, the photographer must be equipped with shooting equipment and enter into the water. Since the photographer directly enters the water, safety accidents occur frequently due to various obstacles or deep water in the water. The proposed underwater stereo photography technique can solve the safety accident problem caused by the entry of the photographer into the water by using the drone for underwater photographing. In addition, this technique has the advantage of obtaining underwater images at low cost. In this study, the angle of the proposed cam for stereoscopic photography was analyzed and the condition that the proper stereoscopic image can be viewed was defined as the distance from the floor of 18cm to the floor distance of 41.4cm. This provision is proposed to be used to adjust the height of the shooting area descended by the elevation chain of the water surface hovering drones.

키워드

JKOHBZ_2019_v9n6_7_f0001.png 이미지

Fig. 1. Turbidity due to suspension

JKOHBZ_2019_v9n6_7_f0002.png 이미지

Fig. 2. Interocular Distance

JKOHBZ_2019_v9n6_7_f0003.png 이미지

Fig. 3. Factors of feeling 3-dimensional

JKOHBZ_2019_v9n6_7_f0004.png 이미지

Fig. 4. 3D GoPro HERO SYSTEM

JKOHBZ_2019_v9n6_7_f0005.png 이미지

Fig. 5. Gopro Cineform Studio screen

JKOHBZ_2019_v9n6_7_f0006.png 이미지

Fig. 6. 3D HERO SYSTEM and GoPpro connection

JKOHBZ_2019_v9n6_7_f0007.png 이미지

Fig. 7. Underwater shooting system using drone

JKOHBZ_2019_v9n6_7_f0008.png 이미지

Fig. 8. Composition of Water surface hovering drone

JKOHBZ_2019_v9n6_7_f0009.png 이미지

Fig. 9. Concept of Water surface hovering drones

JKOHBZ_2019_v9n6_7_f0010.png 이미지

Fig. 10. Waypoint autonomous flight for multiple underwater Photography

JKOHBZ_2019_v9n6_7_f0011.png 이미지

Fig. 11. Shooting angle of Gopro

JKOHBZ_2019_v9n6_7_f0012.png 이미지

Fig. 12. Distance from camera lens to foreground

참고문헌

  1. Y. H. Lee & U. W. Jeong. (2003). Underwater photography. Seoul: Pungdeung Publisher.
  2. D. W. Guo & J. H. Chung. (2017). A study of utilizing 2D photo scan technology to efficiently design 3D models. Journal of Digital Convergence, 15(7), 393-400. DOI : 10.14400/JDC.2017.15.7.393
  3. J. R. Griffin & J. D. Grinoam. (1995). Binocular anomalies: procedures for vision therapy. 3rd ed, Boston: Butterworth-Heinemann. 49-50.
  4. D. D. Mishaels. (1975). Visual optics and refraction: A Clinical approach. Mosby company, St Louis, 363-380.
  5. Scheiman M. (1986). Fusional facility, Am J. Optom. Physiol. Opt, 63-76.
  6. S. J. Han. (2016). Quantitative analysis of display fatigue induced by 2D, 3D videos. Journal of Digital Convergence, 14(3), 329-335. DOI : 10.14400/JDC.2016.14.3.329
  7. K. Ukai & P. A. Howarth. (2008). Visual stress caused by viewing stereoscopic motion images: background, the ories, and observations. Display, 29(2). 106-116. https://doi.org/10.1016/j.displa.2007.09.004
  8. Y. Sumio. (2011). Visual perception from stereoscopic images for system design. Global 3D technology forum. Korea chamber of comerce & industry, 11-36.
  9. C. Ware & G. Franck. (1994). Viewing a graph in a virtual reality display is three times as good as a 2D diagram. IEEE Sumposium on Visual Languages, 4(7), 182-183.
  10. S. H. Lee. (2010). Understanding 3D images. Seoul: Jinsaem media.
  11. L. G. Lee & J. H. Chung. (2019). Study on compositing editing of $360^{\circ}$ VR actual video and 3D computer graphic video. Journal of Digital Convergence, 17(4), 255-260. https://doi.org/10.14400/JDC.2019.17.4.255
  12. N. B. Feldman. (2008). Stereoscopic 3-D in 2008. SMPTE Mot. Imag. J., 117(6), 58-63. https://doi.org/10.5594/J15062
  13. K. Ukai. (2006). Human factors for stereoscopic images. IEEE International Conference on Multimedia, 12(9), 1697-1700.
  14. S. Mitchell & W. Bruce. (2002). Clinical management of binocualr vision. 2rd ed, Lippincott, Williams & Wilkins, 3-146.
  15. GoPro. 3D Hero(R) System User Manual. Retrieved from https://gopro.com/content/dam/help/3d-hero-system /Manuals/1-3D-UM-ENG-011711.pdf
  16. GoPro. GoPro Releases GoPro CineForm Studio Premium and Professional. Retrieved from http://www.videomag.gr/web/gopro-releases-gopro-cineform-studio-premium-and-professional/
  17. Q. Paul, J. H. Hyeon, Y. H. Moon & S. W. Ha. (2017). A study on attitude estimation of UAV using image processing. Journal of Convergence for Information Technology, 7(5), 137-148. DOI : 10.22156/CS4SMB.2017.7.5.137
  18. S. W. Ha, Q. Paul & Y. H. Moon. (2018). Improvement of UAV attitude information estimation performance using image processing and kalman filter. Journal of Convergence for Information Technology, 8(6), 135-142. DOI : 10.22156/CS4SMB.2018.8.6.135
  19. ActionDrone & Bluewnet21. GoPro shooting tips - superview and angle of view. Retrieved from https://www.actiondrone.kr/bbs/board.php?bo_table=ac31&wr_id=19