DOI QR코드

DOI QR Code

Assessment of CH4 oxidation in macroinvertebrate burrows of tidal flats

갯벌의 무척추 동물 서식굴 내 메탄산화 평가

  • Kang, J. (Korean Seas Geosystem Research Unit, Korea Institute of Ocean Science & Technology) ;
  • Kwon, K. (Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology) ;
  • Woo, H.J. (Korean Seas Geosystem Research Unit, Korea Institute of Ocean Science & Technology) ;
  • Choi, J.U. (Korean Seas Geosystem Research Unit, Korea Institute of Ocean Science & Technology)
  • 강정원 (관할해역지질연구단, 한국해양과학기술원) ;
  • 권개경 (해양생명공학연구센터, 한국해양과학기술원) ;
  • 우한준 (관할해역지질연구단, 한국해양과학기술원) ;
  • 최재웅 (관할해역지질연구단, 한국해양과학기술원)
  • Received : 2018.04.03
  • Accepted : 2019.02.25
  • Published : 2019.05.31

Abstract

In tidal flats that lack plants, methane ($CH_4$) fluxes are both positive (gas emission) and negative (gas "sinking") in nature. The levels of methanotroph populations significantly affect the extent of $CH_4$ sinking. This preliminary study examined $CH_4$ flux in tidal flats using a circular closed-chamber method to understand the effects of macroinvertebrate burrowing activity. The chamber was deployed over decapods (mud shrimp, Laomedia astacina and crab, Macrophthalmus japonicus) burrows for ~ 2 h, and the $CH_4$ and $CO_2$ concentrations were continuously monitored using a closed, diffuse $CH_4/CO_2$ flux meter. We found that Laomedia astacina burrow (which is relatively long) site afforded higher-level $CH_4$ production, likely due to diffusive emission of $CH_4$ in deep-layer sediments. In addition, the large methanotrophic bacteria population found in the burrow wall sediments has $CH_4$ oxidation (consumption) potential. Especially, nitrite-driven anaerobic oxidation of methane (AOM) may occur within burrows. The proposed $CH_4$-oxidation process was supported by the decrease in the ${\delta}^{13}C$ of headspace $CO_2$ during the chamber experiment. Therefore, macroinvertebrate burrows appear to be an important ecosystem environment for controlling atmospheric $CH_4$ over tidal flats.

식생이 없는 갯벌에서 메탄($CH_4$) 플럭스는 배출과 흡수 양상을 보인다. 특히 메탄영양세균 개체군은 메탄 흡수에 상당한 영향을 준다. 본 예비연구는 거대 무척추 동물의 서식활동(bioturbation) 영향을 이해하기 위해 원형 밀폐 챔버 방법을 사용하여 갯벌에서 메탄 플럭스를 조사하였다. 챔버는 십각목(decapoda)의 mud shrimp(Laomedia astacina)와 crab(Macrophthalmus japonicas) 서식굴에 약 2시간 동안 배치되었고, 메탄과 이산화탄소($CO_2$) 농도는 밀폐된 $CH_4/CO_2$ 확산 플럭스 관측 장비를 사용하여 지속적으로 모니터링 되었다. 서식굴 길이가 긴 Laomedia astacina 위치에서는 깊은 퇴적층의 메탄 방출 때문에 상대적인 높은 수준의 메탄 발생을 일으킨 것으로 나타났다. 또한, 서식굴 퇴적물에서 발견되는 메탄영양세균 개체군은 메탄 산화(oxidation) 잠재력을 나타냈다. 특히 서식굴 내 아질산염 관련 혐기성 산화(anaerobic oxidation of methane, AOM)가 확인되었다. 이러한 메탄 산화 발생은 챔버 실험 동안 이산화탄소의 탄소 안정동위원소비(${\delta}^{13}C$) 감소로 뒷받침되었다. 따라서 갯벌에서 무척추 동물의 서식활동은 대기 중 메탄 농도를 제어할 수 있는 중요한 생태계 환경으로 보인다.

Keywords

HKSJBV_2019_v21n2_95_f0001.png 이미지

Fig. 2. Variations in CH4 and CO2 concentrations with time in the chamber headspace at the ① reference site, and ② Macrophthalmus japonicus and ③ Laomedia astacina burrows; and the CH4 emission rates [by the equation, slope (ppm hr-1)×(chamber volume m3/surface area m2), with correction for the barometric pressure and air temperature] calculated by reference to the initial slope at each site.

HKSJBV_2019_v21n2_95_f0002.png 이미지

Fig. 3. Variations in CO2 concentrations by differences between decapods and reference sites.

HKSJBV_2019_v21n2_95_f0003.png 이미지

Fig. 4. Isotope tracking of the CO2 sources at the L. astacina burrow site in chamber headspace.

HKSJBV_2019_v21n2_95_f0004.png 이미지

Fig. 1. (a) Map showing the chamber experiment site in a tidal flat of Cheonsu Bay, (b) chamber experiment with a diffuse CH4/CO2 flux meter, and (c) gas sampling through a vent using the vacutainer.

Table 1. Proportions of methanogens and methanotrophs in burrow wall sediments and the surface sediment of the reference site, together with the proportions of Candidatus methylomirabilis group bacteria among the methanotrophs (in parentheses)

HKSJBV_2019_v21n2_95_t0001.png 이미지

References

  1. Boetlus, A, Ravenschlag, K, Schubert, CJ, Rickert, D, Widdel, F, Gieseke, A, Amann, R, Jorgensen, BB, Witte, U and Pfannkuche, O (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, pp. 623-626. doi:10.1038/35036572
  2. Chiodini, G, Cioni, R, Guidi, M, Raco, B and Marini, L (1998). Soil $CO_2$ flux measurements in volcanic and geothermal areas, Applied Geochemistry, 13, pp. 543-552. doi:10.1016/S0883-2927(97)00076-0
  3. Choi, J-K, Oh, H-J, Koo, BJ, Ryu, J-H and Lee, S (2011). Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS, Ecological Modelling, 222, pp. 1522-1533. doi:10.1016/j.ecolmodel.2010.12.008
  4. Cui, M, Ma, A, Qi, H, Zhuang, X and Zhuang, G (2015). Anaerobic oxidation of methane: an "active" microbial process, MicrobiologyOpen, 4(1), pp. 1-11. doi:10.1002/mbo3.232
  5. D'Andrea, AF and DeWitt, TH (2009). Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effects on organic matter remineralization and nutrient cycling, Limnology and Oceanography, 54, pp. 1911-1932. doi:10.4319/lo.2009.54.6.1911
  6. Egger, M, Rasigraf, O, Sapart, CJ, Jilbert, T, Jetten, MSM, Rockmann, T, van der Veen, C, Banda, N, Kartal, B, Ettwig, KF and Slomp, CP (2015). Iron-mediated anaerobic oxidation of methane in brackish coastal sediments, Environmental Science and Technology, 49, pp. 277-283. doi:10.1021/es503663z
  7. Fridriksson, T, Padron, E, Oskarsson, F and Perez, NM (2016). Application of diffuse gas flux measurements and soil gas analysis to geothermal exploration and environmental monitoring: Example from the Reykjanes geothermal field, SW Iceland, Renewable Energy, 86, pp. 1295-1307. doi:10.1016/j.renene.2015.09.034
  8. Furukawa, Y (2001). Biogeochemical consequences of macrofauna burrow ventilation, Geochemical Transactions, doi:10.1039/b108381c.
  9. Hughes, DJ, Atkinson, RJA and Ansell, AD (2000). A field test of the effects of megafaunal burrows on benthic chamber measurements of sediment-water solute fluxes, Marine Ecology Progress Series, 195, pp. 189-199. doi:10.3354/meps195189
  10. Ishizuka, S, Sakata, T and Ishizuka, K (2000). Methane oxidation in Japanese forest soils, Soil Biology and Biochemistry, 32, pp. 769-777. doi:10.1016/S0038-0717(99)00200-X
  11. Kang, J, Koo, BJ, Jeong, K-S, Woo, HJ, Seo, J, Seo, H-S, Kim, M-S and Kwon, K (2018). Insights into macroinvertebrate burrowing activity and methane flux in tidal flats, proceedings of the 15th International Coastal Symposium, South Korea, 13-18 May 2018, pp. 681-685. doi:10.2112/SI85-137.1
  12. Kim, W-M (2014). A study on carbon dioxide and methane concentrations, and carbon isotopes as measured in East Asia during 1991-2011, Master's Thesis, Korea National University of Education, Cheongju-si, Chungbuk. [Korean literature]
  13. Kristensen, E, Flindt, MR, Ulomi, S, Borges, AV, Abril, G and Bouillon, S (2008). Emission of $CO_2$ and $CH_4$ to the atmosphere by sediments and open waters in two Tanzanian mangrove forests, Marine Ecology Progress Series, 370, pp. 53-67. doi:10.3354/meps07642
  14. Migne, A, Davoult, D, Spilmont, N, Menu, D, Boucher, G, Gattuso, J-P and Rybarczyk, H (2002). A closed-chamber $CO_2$-flux method for estimating intertidal primary production and respiration under emersed conditions, Marine Biology, 140, pp. 865-869. doi:10.1007/s00227-001-0741-1
  15. Mora, G and Raich, JW (2007). Carbon-isotopic composition of soil-respired carbon dioxide in static closed chambers at equilibrium, Rapid Communications Mass Spectrometry, 21, pp. 1866-1870. doi:10.1002/rcm.3034
  16. Morrisey, DJ, DeWitt, TH, Roper, DS and Williamson, RB (1999). Variation in the depth and morphology of burrows of the mud crab Helice crassa among different types of intertidal sediment in New Zealand, Marine Ecology Progress Series, 182, pp. 231-242. doi:10.3354/meps182231
  17. Nogaro, G and Burgin, AJ (2014). Influence of bioturbation on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in freshwater sediments, Biogeochemistry, 120, pp. 279-294. doi:10.1007/s10533-014-9995-9
  18. Otani, S, Kozuki, Y, Yamanaka, R, Sasaoka, H, Ishiyama, T, Okitsu, Y, Sakai, H and Fujiki, Y (2010). The role of crabs (Macrophthalmus japonicas) burrows on organic carbon cycle in estuarine tidal flat, Japan, Estuarine, Coastal and Shelf Science, 86, pp. 434-440. doi:10.1016/j.ecss.2009.07.033
  19. Schroder, IF, Zhang, H, Zhang, C and Feitz, AJ (2016). The role of soil flux and soil gas monitoring in the characterization of a CO2 surface leak: A case study in Qinghai, China, International Journal of Greenhouse Gas Control, 54, pp. 84-95. doi:10.1016/j.ijggc.2016.07.030
  20. Takahashi, K, Tomita, J, Nishioka, K, Hisada, T and Nishijima, M (2014). Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing, PLoS One, 9, e105592. doi:10.1371/journal.pone.0105592
  21. Ueyama, M, Takeuchi, R, Takahashi, Y, Ide, R, Ataka, M, Kosugi, Y, Takahashi, K and Saigusa, N (2015). Methane uptake in a temperate forest soil using continuous closed-chamber measurements, Agricultural and Forest Meteorology, 213, pp. 1-9. doi:10.1016/j.agrformet.2015.05.004
  22. Widory, D, Proust, E, Bellenfant, G and Bour, O (2012). Assessing methane oxidation under landfill covers and its contribution to the above atmospheric $CO_2$ levels: The added value of the isotope (${\delta}^{13}C$ and ${\delta}^{18}O\;CO_2$;${\delta}^{13}C$ and ${\delta}D\;CH_4$) approach, Waste Management, 32, pp. 1685-1692. doi:10.1016/j.wasman.2012.04.008