DOI QR코드

DOI QR Code

횡방향 거동 특성을 고려한 부하모사 시스템 해석

Analysis of Load Simulating System Considering Lateral Behavior of a Vehicle

  • Kim, Hyo-Jun (Department of Mechanical Engineering, Kangwon National University)
  • 투고 : 2019.02.27
  • 심사 : 2019.05.03
  • 발행 : 2019.05.31

초록

자동차의 과도한 차체 운동과 조종 불안정성을 유발하는 대표적인 외란 입력으로는 운전자에 의해 가해지는 조향 핸들 조작이다. 급격하고 과도한 핸들 조작은 SUV 차량처럼 기하학적 및 동역학적 특성에 따라 차량 전복 현상도 발생시킬 수 있다. 본 연구에서는 이에 대응할 수 있는 제어 시스템의 구조화에 대하여 다음과 같이 기초 연구를 수행하였다. 운전자 조종으로 유발되는 횡방향 거동에 대한 수학적 모델링을 수행하고, 이를 토대로 차체 운동을 제어할 수 있는 제어기를 설계하였다. 파라미터 불확실성으로 인한 모델링 오차에 대해 강건한 제어 성능을 확보하기 위하여 $H_{\infty}$ 알고리즘을 적용하였다. 비 연성화된 1/4 차량을 기반으로, 차체에 작용하는 모우멘트에 상응하는 동적 부하를 모사할 수 있는 모델을 제시하였다. 동적 시뮬레이션을 수행하여 부하 모사 모델의 타당성을 파악하였다. 차체- 차축- 서스펜션- 타이어로 조합되는 1/4 실험 차량 장치와 부하 모사 모듈, 서스펜션 제어 모듈 및 Hils 기술을 적용하는 차체 거동 제어 시스템에 대한 프레임워크를 제안하였다.

The driver's steering wheel maneuver is a typical disturbance that causes excessive body motion and traveling instability of a vehicle. Abrupt and extreme operation can cause rollover depending on the geometric and dynamic characteristics, e.g., SUV vehicles. In this study, to cope with the performance limitation of conventional cars, fundamental research on the structurization of a control system was performed as follows. Mathematical modeling of the lateral behavior induced by driver input was carried out. A controller was designed to reduce the body motion based on this model. An algorithm was applied to secure robust control performance against modeling errors due to parameter uncertainty, $H_{\infty}$. Using the decoupled 1/4 car, a dynamic load simulating model considering the body moment was suggested. The simulation result showed the validity of the load-simulating model. The framework for a lateral behavior control system is proposed, including an experimental 1/4 vehicle unit, load simulating module, suspension control module, and hardware-in-the-loop simulation technology.

키워드

SHGSCZ_2019_v20n5_621_f0001.png 이미지

Fig. 1. Driver’s steer maneuver and Dynamic force

SHGSCZ_2019_v20n5_621_f0002.png 이미지

Fig. 2. Comparison of dynamic behavior (line: LBM, bold-line: LSM)

SHGSCZ_2019_v20n5_621_f0003.png 이미지

Fig. 3. Configuration of overall lateral motion control system

참고문헌

  1. J. Lin, R.J. Lian, "Intelligent control of active suspension systems", IEEE Transactions on Industrial Electronics , Vol.58, No.2, pp. 618-628, 2011. DOI : http://dx.doi.org/10.1109/TIE.2010.2046581
  2. H. M. Soliman, A. Benzaouia, H. Yousef, "Saturated robust control with regional pole placement and application to car active suspension", Journal of Vibration and Control , Vol.22, No.1, pp. 258-269, 2016. DOI : http://dx.doi.org/10.1177/1077546314528230
  3. H. J. Kim, "Experimental study of active vibration control for trailed two-wheeled device", International Journal of Precision Engineering and Manufacturing, Vol.13, No.2, pp. 363-369, 2012. DOI : http://dx.doi.org/10.1007/s12541-012-0046-y
  4. T. P. J. Sande, I.J.M. Besselink, H. Nijmeijer, "Rule-based control of a semi-active suspension for minimal sprung mass acceleration: design and measurement", Vehicle System Dynamics , Vol.54, No.3, pp. 281-285, 2016. DOI : http://dx.doi.org/10.1080/00423114.2015.1135970
  5. R. J. Lian, "Enhanced adaptive self-organizing fuzzy sliding-mode controller for active suspension systems", IEEE Transactions on Industrial Electronics , Vol.60, No.3, pp. 958-968, 2013. DOI : http://dx.doi.org/10.1109/TIE.2012.2190372
  6. L. Li, F. Liao, "Parameter-dependent preview control with robust tracking performance", IET Control Theory & Applications , Vol. 11, Iss. 1, pp. 38-46, 2017. DOI : http://dx.doi.org/10.1049/iet-cta.2016.0361
  7. C. Gohrle, A. Schindler, A. Wagner, O. Sawodny, "Road profile estimation and preview control for low-bandwidth active suspension systems", IEEE/ASME Transactions on Mechatronics , Vol. 20, No. 5, pp. 2299-2310, 2015. DOI : http://dx.doi.org/10.1109/TMECH.2014.2375336
  8. Z. Xie, P. Wong, J. Zhao, T. Xu, K. Wong, H. Wong, "A noise-insensitive semi-active air suspension for heavy-duty vehicle with an integrated fuzzy-wheel base preview control", Mathematical Problems in Engineering , Vol. 2013, pp. 1-12, 2013. DOI : http://dx.doi.org/10.1155/2013/953930
  9. H. E. Tseng, D. Hrovat, "State of the art survey: active and semi-active suspension control", Vehicle System Dynamics , Vol.53, No.7, pp. 1034-1062, 2015. DOI : http://dx.doi.org/10.1080/00423114.2015.1037313
  10. H. J. Kim, "Robust roll motion control of a vehicle using integrated control strategy", Control Engineering Practice , Vol.19, pp. 820-827, 2011. DOI : http://dx.doi.org/10.1016/j.conengprac.2011.04.009
  11. A. Hac, I. Youn, "Optimal semi-active suspension with preview based on a quarter car model", Journal of Vibration and Acoustics , Vol.114, pp. 84-92, 1992. DOI : http://dx.doi.org/10.1115/1.2930239