DOI QR코드

DOI QR Code

충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구

A Collision Simulation Study on the Structural Stability for a Programmable Drone

  • 투고 : 2019.03.14
  • 심사 : 2019.05.03
  • 발행 : 2019.05.31

초록

코딩 교육용 드론은 비행의 기초 원리를 체험하는 것뿐 아니라, 주로 아두이노(Arduino) 기반의 프로그래밍을 통해 드론을 제어하고 조종할 수 있도록 개발된 드론이다. 교육용 드론의 특성상 주 사용자는 드론 조종에 미숙한 학생들이기 때문에 드론과 외부 물체와의 충돌이 빈번하게 발생하여 드론 기체의 손상 비율이 높은 문제점이 있다. 본 연구에서는 교육용 드론 기체에 대한 구조 동역학 기반의 충돌 시뮬레이션 방법을 통해 드론의 구조적 안정성을 평가하였다. 약 240,000개의 4면체 요소를 갖는 해석 모델을 사용하여 $0^{\circ}$, $+15^{\circ}$, $-15^{\circ}$의 충돌 각도에 따른 3가지 케이스에 대해 충돌 시뮬레이션을 수행하였다. 3차원 구조물의 동적 거동 시뮬레이션에 탁월한 기능을 제공하는 ANSYS LS-DYNA를 활용하여 드론이 4 m/s의 속도로 벽에 충돌했을 때 주요 관심 부분인 드론 상 하부, 링 조립체에 발생하는 응력 분포 및 변형률을 분석하였다. 주요 관심 부분의 등가 응력에 따른 안전율은 0.72~2.64, 항복 변형률 기준 안전율은 1.72~26.67의 범위로 도출되었다. 이러한 안전율을 기준으로 재료 물성에 따른 항복 변형률과 종국 변형률을 초과하는 응력이 발생하는 부분에 대한 구조 안정성 확보를 위해 설계 보강이 필요한 부분을 제시한다.

A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.

키워드

SHGSCZ_2019_v20n5_627_f0001.png 이미지

Fig. 1. Simulation examples using LS-DYNA (a) Car collision (b) Contact and crash (c) Drop test (d) Molding

SHGSCZ_2019_v20n5_627_f0002.png 이미지

Fig. 2. Coding training drone E1

SHGSCZ_2019_v20n5_627_f0003.png 이미지

Fig. 3. Three parts of E1 drone (a) Upper part (b) Lower part (c) Ring assay and internal part

SHGSCZ_2019_v20n5_627_f0004.png 이미지

Fig. 4. Finite element model for E1 drone

SHGSCZ_2019_v20n5_627_f0005.png 이미지

Fig. 5. Contact between upper part and lower part of E1 drone (a) Upper part (b) Lower part

SHGSCZ_2019_v20n5_627_f0006.png 이미지

Fig. 6. Area of interest in simulation

SHGSCZ_2019_v20n5_627_f0007.png 이미지

Fig. 7. Resultant displacement of Case1

SHGSCZ_2019_v20n5_627_f0008.png 이미지

Fig. 8. Equivalent stress of upper, lower and ring assembly for Case1

SHGSCZ_2019_v20n5_627_f0009.png 이미지

Fig. 9. Effective plastic strain of upper, lower and ring assembly for Case1

SHGSCZ_2019_v20n5_627_f0010.png 이미지

Fig. 10. Maximum equivalent stress of ring assembly for case1

SHGSCZ_2019_v20n5_627_f0011.png 이미지

Fig. 11. Resultant displacement of Case2

SHGSCZ_2019_v20n5_627_f0012.png 이미지

Fig. 12. Equivalent stress of upper, lower and ring assembly for Case2

SHGSCZ_2019_v20n5_627_f0013.png 이미지

Fig. 13. Effective plastic strain of upper, lower and ring assembly for Case2

SHGSCZ_2019_v20n5_627_f0014.png 이미지

Fig. 14. Maximum equivalent stress of upper part for case2

SHGSCZ_2019_v20n5_627_f0015.png 이미지

Fig. 15. Resultant displacement of Case1

SHGSCZ_2019_v20n5_627_f0016.png 이미지

Fig. 16. Equivalent stress of upper, lower and ring assembly for Case1

SHGSCZ_2019_v20n5_627_f0017.png 이미지

Fig. 17. Effective plastic strain of upper, lower and ring assembly for Case1

SHGSCZ_2019_v20n5_627_f0018.png 이미지

Fig. 18. Maximum equivalent stress of lower part for case3

Table 1. Material properties for E1 drone

SHGSCZ_2019_v20n5_627_t0001.png 이미지

Table 2. Yield strain and ultimate strain for evaluation

SHGSCZ_2019_v20n5_627_t0002.png 이미지

Table 3. Equivalent stress and safety factor by case

SHGSCZ_2019_v20n5_627_t0003.png 이미지

Table 4. Strain and safety factor by case

SHGSCZ_2019_v20n5_627_t0004.png 이미지

참고문헌

  1. R. Mathew, F. Francesco, "Micro-drone RCS analysis", Proceedings of 2015 IEEE Radar Conference , IEEE, Johannesburg, South Africa, pp.452-456, Oct. 2015. DOI: https://doi.org/10.1109/RadarConf.2015.7411926
  2. D. David, "Drones for Transmission Infrastructure Inspection and Mapping Improve Efficiency", Natural Gas and Electricity , Vol.33, No.12, pp.7-11, June 2017. DOI: https://doi.org/10.1002/gas.21991
  3. Z. Wang, D. Yang, K. Yang, L. Guo, J. Tan, "Aerodynamic Characteristics Simulation Analysis of a Certain Type Changed Wing Drone Aircraft Based on CFD", Applied Mechanics and Materials , Vol.644-650, pp.746-750, Sept. 2014. DOI : https://doi.org/10.4028/www.scientific.net/AMM.644-650.746
  4. C. Ulloa, G. Rey, V. Padron, J. Nunez, "Use of open source tools and wind tunnel data in UAV propeller modeling for dynamic simulation", 2018 International Conference on Unmanned Aircraft Systems , IEEE, Dallas, USA, pp.335-339, June. 2018. DOI: https://doi.org/10.1109/ICUAS.2018.8453304
  5. M. Sajid, Y. Yang, G. Kim, K. Choi, "Remote monitoring of environment using multi-sensor wireless node installed on quad-copter drone", 2016 IEEE International Symposium on Robotics and Intelligent Sensors , IEEE, Tokyo, Japan, pp.213-216, Dec. 2016. DOI: https://doi.org/10.1109/IRIS.2016.8066093
  6. W. Yang, M. Chun, G. Jang, J. Baek, S. Kim, "A study on smart drone using quadcopter and object tracking techniques", 4th International Conference on Computer Applications and Information Processing Technology , IEEE, Kuta Bali, Indonesia, pp.1-5, March 2018. DOI: https://doi.org/10.1109/CAIPT.2017.8320658
  7. S. Kale, S. Khandagale, S. Gaikwad, S. Narve, P. Gangal, "Agriculture drone for spraying fertilizer and pesticides", International Journal of Advanced Research in Computer Science and Software Engineering , Vol.5, No.12, pp.804-807, Dec. 2015.
  8. N. Muyunda, M. Ibrahim, "Arduino-based smart garbage monitoring system: Analysis requirement and implementation", 2017 International Conference on Computer and Drone Applications , IEEE, Kuching, Malaysia, pp.28-32, Nov. 2017. DOI: https://doi.org/10.1109/ICONDA.2017.8270394
  9. T. Vogeltanz, "Comparison of open-source CFD software for aerodynamic analysis of mini-UAV", 2015 IEEE/AIAA 34th Digital Avionics Systems Conference , IEEE, Prague, Czech Republic, pp.5E3-1-5E3-15, Sept. 2015. DOI: https://doi.org/10.1109/DASC.2015.7311438
  10. J. Purvi, "Wing analysis of flapping wing unmanned aerial vehicle using CFD", International Journal of Advance Engineering and Research Development , Vol.2, No.5, pp.216-221, May 2015.
  11. LSTC(Livermore Software Technology Corporation). Products- LS-DYNA, Available From: http://www.lstc.com/products/ls-dyna (accessed Oct. 10, 2018)
  12. R. Barauskas, A. Abraitiene, "Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA", International Journal of Impact Engineering , Vol.34, No.7, pp.1286-1305, July 2007. DOI: https://doi.org/10.1016/j.ijimpeng.2006.06.002
  13. M. Kim, D. Jung, J. Kim, H. Kim, "A HPC based Modeling and Simulation Cloud Platform for Multi-tenancy Support", Platform Technology Letters , Vol.5, No.3, pp.19-22, Sept. 2018.