DOI QR코드

DOI QR Code

An Analytical Study on the Slope Safety Factor Considering Various Conditions

다양한 조건을 고려한 사면안전율에 관한 해석적 연구

  • 박춘식 (창원대학교 공과대학 토목환경화공융합공학부) ;
  • 안상진 (명성종합건설)
  • Received : 2019.04.01
  • Accepted : 2019.04.27
  • Published : 2019.05.31

Abstract

This paper demonstrates safety factor for effective planning at initial stage by utilizing results on changes of safety factor according to various conditions of slop and examines impacts of factors that affect slope safety factors as well. Firstly, it describes shear strength which satisfies minimum allowable safety factor: 1.20 depending on height and slope. As the height increases by 5.0 m, the safety factors decrease by 0.04 while it tends to consistently reduce by approximately 20%, 30% and 40% after height goes to 10.0 m. As slope reduces by about 0.3, the safety factors increases by 0.4, which shows the rate of safety factors on slope grows by about 10%, 20% and 30% on lowering slope. When cohesion goes up by 10.0 kPa the safety factors increases by around 40% respectably while the angle of internal friction grows by $5^{\circ}$, it increases by about 8%. The rate of safety factors is identified as $Fs=3.86H^{-0.59}$, Fs = 0.43 s, Fs = 0.04 c, $Fs=0.02{\phi}$ depending on height, slope and shear strength. The safety factor with rainfall infiltration tends to increase by 18% compared to the condition of saturated surface on earth.

본 연구는 다양한 조건에 대한 사면 안정성 검토에 따른 안전율 변화 결과를 활용하여 초기 설계단계에서부터 참고하여 효율적인 설계가 될 수 있는 안전율을 제시하였으며, 사면안전율에 영향을 주는 인자들에 대한 영향성을 검토하였다. 우선 사면 높이 및 사면 기울기에 따라 최소 허용안전율 1.20을 만족하는 지반 전단강도를 제시하였다. 사면높이가 5.0m씩 증가함에 따라 안전율은 0.04씩 감소하는 것으로 나타났고, 사면높이에 따른 안전율은 사면높이 10.0m에 비해 높이가 높아질수록 약 20%, 30%, 40%씩 일정하게 감소하는 경향을 나타내었다. 사면 기울기가 약 0.3씩 완만해질수록 안전율은 0.4 정도씩 증가하는 것으로 나타났고, 사면기울기 증가에 대한 안전율 증가비는 기울기가 완만해질수록 약 10%, 20%, 30% 증가하는 것으로 나타났다. 점착력이 10.0kPa씩 증가할수록 안전율은 약 40%씩 증가하는 것으로 나타났고, 내부마찰각은 $5^{\circ}$씩 증가할수록 약 8%씩 증가하는 것으로 나타났다. 또한 사면 높이, 사면 기울기, 전단강도에 따른 안전율 변화비는 각 영향인자에 따라 $Fs=3.86H^{-0.59}$, Fs = 0.43 s, Fs = 0.04 c, $Fs=0.02{\phi}$ 의 증가비 관계를 나타내었다. 강우침투 시는 지표면 포화 시의 안전율보다 약 18% 정도 크게 나타났다.

Keywords

GJBGC4_2019_v35n5_31_f0001.png 이미지

Fig. 1. Forces for one slice

GJBGC4_2019_v35n5_31_f0002.png 이미지

Fig. 2. Change of average safety factor with regard to height

GJBGC4_2019_v35n5_31_f0003.png 이미지

Fig. 3. Normalized safety factor on height 10.0m

GJBGC4_2019_v35n5_31_f0004.png 이미지

Fig. 4. Decreasing ratio of safety factor with regard to height

GJBGC4_2019_v35n5_31_f0005.png 이미지

Fig. 5. Change of average safety factor with regard to slope

GJBGC4_2019_v35n5_31_f0006.png 이미지

Fig. 6. Normalized safety factor on slope 1:1.2

GJBGC4_2019_v35n5_31_f0007.png 이미지

Fig. 7. Increasing ratio of safety factor with regard to slope

GJBGC4_2019_v35n5_31_f0008.png 이미지

Fig. 8. Normalized safety factor on cohesion 10kPa

GJBGC4_2019_v35n5_31_f0009.png 이미지

Fig. 9. Normalized safety factor on angle of internal friction 20°

GJBGC4_2019_v35n5_31_f0010.png 이미지

Fig. 10. Change of average safety factor with regard to cohesion

GJBGC4_2019_v35n5_31_f0011.png 이미지

Fig. 11. Increasing ratio of safety factor with regard to cohesion

GJBGC4_2019_v35n5_31_f0012.png 이미지

Fig. 12. Change of average safety factor with regard to angle of internal friction

GJBGC4_2019_v35n5_31_f0013.png 이미지

Fig. 13. Increasing ratio of safety factor with regard to angle of internal friction

GJBGC4_2019_v35n5_31_f0014.png 이미지

Fig. 14. Ground water level by rainfall infiltration (height=25.0m, slope=1:2.0)

GJBGC4_2019_v35n5_31_f0015.png 이미지

Fig. 15. Safety factor with regard to ground water level

GJBGC4_2019_v35n5_31_f0016.png 이미지

Fig. 16. Safety factor on height 10m

GJBGC4_2019_v35n5_31_f0017.png 이미지

Fig. 17. Safety factor on slope 1:1.2

GJBGC4_2019_v35n5_31_f0018.png 이미지

Fig. 18. Safety factor on cohesion 10kPa

GJBGC4_2019_v35n5_31_f0019.png 이미지

Fig. 19. Safety factor on angle of internal friction 20°

Table 1. Minimum shear strength with regard to height and slope

GJBGC4_2019_v35n5_31_t0001.png 이미지

Table 2. Decreasing ratio of safety factor on height 10.0m

GJBGC4_2019_v35n5_31_t0002.png 이미지

Table 3. Increasing ratio of safety factor on slope 1:1.2

GJBGC4_2019_v35n5_31_t0003.png 이미지

Table 4. Increasing ratio of safety factor on cohesion 10.0kPa

GJBGC4_2019_v35n5_31_t0004.png 이미지

Table 5. Increasing ratio of safety factor on angle of internal friction 20°

GJBGC4_2019_v35n5_31_t0005.png 이미지

References

  1. Ahn, S. J. (2015), "An analytical study on the safety factor of slopes considering various condition", Changwon National University Doctoral Dissertation (in Korean).
  2. Chen, Y. M., Lansivaara, T., and Wei, W. B. (2007), "Twodimensional Slope Stability Analysis by Limit Equilibrium and Strength Reduction Methods", Computers and Geotechnics, No.34, Vol.3, pp.137-150. https://doi.org/10.1016/j.compgeo.2006.10.011
  3. Cho, S. B. (2014), "Research on slope stability analysis of colluvium", University of Seoul Master's Thesis (in Korean).
  4. Gasmo, J. M., Rahardjo, H., and Leong, E. C. (2000), "Infiltration Effects on Stability of a Residual Soil Slope", Computers and Geotechnics, Vol.26, No.2, pp.145-165. https://doi.org/10.1016/S0266-352X(99)00035-X
  5. Hammah, R. (2005), "A Comparison of Finite Element Slope Stability Analysis with Conventional Limit-equilibrium Investigation", In Proceedings of the 58th Canadian Geotechnical and 6th Joint IAH-CNC and CGS Groundwater Specialty Conferences-GeoSask.
  6. Jung, J. G. (2015), "A study on the characteristics of shear strength parameters of various soils", Changwon National University Doctoral Dissertation (in Korean).
  7. Kim, M. S. (2012), "Comparison of finite element method and limit equilibrium method for slope stability analysis", Chonbuk National University Master's Thesis (in Korean).
  8. Kim, Y. M. (2004), "Slope Stability Analysis Considering Seepage Conditions by FEM Using Strength Reduction Technique", Journal of the Korean geotehnical society, No.20, Vol.8, pp.97-102 (in Korean).
  9. Kim, Y. S., Kim, J. H., Lee, J. G., and Kim, S. S. (2013), "A Study on Soil Slope Stability Design Considering Seepage Analysis", Journal of the Korean geotehnical society, No.29, Vol.1, pp. 135-147 (in Korean). https://doi.org/10.7843/kgs.2013.29.1.135
  10. Kim, Y. G. (2009), "Soil slope design and stability evaluation methodology considering hydraulic conductivity and rainfall characteristics", KAIST Doctoral Dissertation (in Korean).
  11. Korean geotechnical society (1994), geotechnical engineering series 5, Gumi company, pp.20 (in Korean).
  12. Lee, B. R. (2008), "A study on the application method of shear strength parameters for the cut-slope stability analysis", University of Seoul Master's Thesis (in Korean).
  13. Lee, D. Y. and Yoo, C. S. (2003), "Comparative Study between Finite Element Method and Limit Equilibrium Method on Slope Stability Analysis", Journal of the Korean Geotehnical Society, No.19, Vol.4, pp.65-74 (in Korean).
  14. Lee, J. G. and Chang, S. M. (1996), "Comparative Study on Slope Stability of Analysis Methods Abstract", Journal of the Korean Geotehnical Society, No.16, Vol.3-4, pp.359-368 (in Korean).
  15. Ministry of land, infrastructure and transport, Koren precipitation frequence data sever, http://www.k-idf.re.kr (in Korean).
  16. Oh, S. B., Moon, J. H., Kim, T. G., and Kim, Y. G. (2008), "Case Study of Rainfall-induced Slope Failures on the Effect of Unsaturated Soil Characteristics", Journal of the Korean Geotehnical Society, Vol.28, No.3C, pp.167-178 (in Korean).
  17. Oh, W. T. and Vanapalli, S. K. (2010), "Influence of Rain Infiltration on the Stability of Compacted Soil Slopes", Computers and Geotechnics, Vol.37, No.5, pp.649-657. https://doi.org/10.1016/j.compgeo.2010.04.003
  18. Rahardjo, H., Leong, E. C., and Rezaur, R. B. (2008), "Effect of Antecedent Rainfall on Pore-water Pressure Distribution Characteristics in Residual Soil Slopes under Tropical Rainfall", Hydrological Processes, Vol.22, No.4, pp.506-523. https://doi.org/10.1002/hyp.6880
  19. Rahimi, A., Rahardjo, H., and Leong, E. C. (2010), "Effect of Antecedent Rainfall Patterns on Rainfall-induced Slope Failure", Journal of Geotechnical and Geoenvironmental Engineering, Vol.137, No.5, pp.483-491. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000451
  20. Ryu, J. Y. (2003), "Estimation of Slope Stability During the Change of Matric Suction", Journal of the Korean Geotehnical Society, Vol.23, No.4C, pp.195-201 (in Korean).
  21. Whang, Y. C. (2015), "Change of Slope Stability due to Slope Inclination and Surface Conditions", Journal of the Korean Geotehnical Society, No.31, Vol.2, pp.5-11 (in Korean).
  22. Won, I. G. (2008), "A study on an estimated of presumptive equation of safety factor according to the slope incline", Changwon National University Master's Thesis (in Korean).
  23. Yang, G. H., Zhong, Z. H., Zhang, Y. C., and LI, D. J. (2010), "Slope Stability Analysis by Local Strength Reduction Method", Rock and Soil Mechanics, Vol.31, No.2, pp.53-58.