Fig. 1. A confusion matrix and their meaning.
Fig. 2. Comparison of diagonal elements of confusion matrix from LeNet-type and MiniVGGNet-type models for different sizes of input images.
Fig. 3. Normalized diagonal values from confusion matrices by ensemble models for input images of 64 ×64 × 3.
Fig. 4. Normalized diagonal values from confusion matrices by ensemble models for input images of 128 ×128 × 3.
Fig. 5. Confusion matrices and F1 scores of several ensemble models by the averaging method.
Table 1. Class name and its designated index for species and surface combination
Table 2. The architecture of LeNet models.
Table 3. The architecture of MiniVGGNet models.
Table 4. The best results by SNR-like measure from ensemble sets for input image of 64 × 64 × 3.
Table 5. The best results by SNR-like measure from ensemble sets for input image of 128 × 128 × 3.
Table 6. Performance measures of LeNet2-LeNet3-MiniVGGNet4 ensemble model by the averaging method.
Table 7. Performance measures (F1 scores) of the best ensemble model (LeNet2, LeNet3, and MiniVGGNet4) by the averaging method and individual CNN models (LeNet3 and MiniVGGNet3).
References
- Eom, Y., Park, B. 2018. Wood Species Identification of Documentary Woodblocks of Songok Clan of the Milseong Park, Gyeongju, Korea. Journal of the Korean Wood Science and Technology 46(3):270-277. https://doi.org/10.5658/WOOD.2018.46.3.270
- Hafemann, L.G., Oliveira, L.S., Cavalin, P. 2014. Forest Species Recognition Using Deep Convolutional Neural Networks. 22nd International Conference on Pattern Recognition (ICPR), pp. 1103-1107.
- Hermanson, J.C., Wiedenhoeft, A.C. 2011. A brief review of machine vision in the context of automated wood identification systems. IAWA Journal 32(2): 233-250. https://doi.org/10.1163/22941932-90000054
- Hermanson, J., Wiedenhoeft, A.C., Gardner, S. 2013. A machine vision system for automated field-level wood identification. Global Timber Tracking Network. Presentation at Regional Workshop for Asia, Pacific and Oceania on identification of timber species and origins, Beijing, China.
- Khalid, M., Lee, E.L.Y., Yusof, R., Nadaraj, M. 2008. Design of an intelligent wood species recognition system. International Journal of Simulation System, Science and Technology 9(3): 9-19.
- Kim, S.C., Choi, J. 2016. Study on Wood Species Identification for Daeungjeon Hall of Jeonghyesa Temple, Suncheon. Journal of the Korean Wood Science and Technology 44(6): 897-902. https://doi.org/10.5658/WOOD.2016.44.6.897
- Kwon, O., Lee, H.G., Lee, M.-R., Jang, S., Yang, S.-Y., Park, S.-Y., Choi, I.-G., Yeo, H. 2017. Automatic Wood Identification of Korean Softwood Based on Convolutional Neural Networks. Journal of Korean Wood Science and Technology 45(6): 797-808. https://doi.org/10.5658/WOOD.2017.45.6.797
- Lecun, Y., Bottou, L., Bengio, Y., Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278-2324. https://doi.org/10.1109/5.726791
- Lee, K., Seo, J., Han, G. 2018. Dating Wooden Artifacts Excavated at Imdang-dong Site, Gyeongsan, Korea and Interpreting the Paleoenvironment according to the Wood Identification. Journal of the Korean Wood Science and Technology 46(3): 241-252. https://doi.org/10.5658/WOOD.2018.46.3.241
- Park, J.H., Oh, J.E., Hwang, I.S., Jang, H.U., Choi, J.W., Kim, S.C. 2018. Study on Species Identification for Pungnammun Gate (Treasure 308) in Jeonju, Korea. Journal of the Korean Wood Science and Technology 46(3): 278-284. https://doi.org/10.5658/WOOD.2018.46.3.278
- Park, S.Y., Kim, J.C., Kim, J.H., Yang, S.Y., Kwon, O., Yeo, H., Cho, K., Choi, I.G. 2017. Possibility of Wood Classification in Korean Softwood Species Using Near-infrared Spectroscopy Based on Their Chemical Compositions. Journal of the Korean Wood Science and Technology 45(2): 202-212. https://doi.org/10.5658/WOOD.2017.45.2.202
- Ravindran, P., Costa, A., Soares, R., Wiedenhoeft, A.C. 2018. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods 14:25 https://doi.org/10.1186/s13007-018-0292-9
- Rosebrock, A. 2017. Deep Learning for Computer Vision with Python: Practitioner Bundle. PyImageSearch, pp. 73-83.
- Simonyan, K., Zisserman, A. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv.org. cs.CV.
- Tang, X.J., Tay, Y.H., Siam, N.A., Lim, S.C. 2017. Rapid and Robust Automated Macroscopic Wood Identification System using Smartphone with Macro-lens. arXiv:1709.08154v1 [cs.CY]
- Tou, J.Y., Lau, P.Y., Tay, Y.H. 2007. Computer visionbased wood recognition system. In Proceedings of International workshop on advanced image technology.
- Yang, S.Y., Park, Y., Chung, H., Kim, H., Park, S.Y., Choi, I.G., Kwon, O., Yeo, H. 2017. Soft Independent Modeling of Class Analogy for Classifying Lumber Species Using Their Near-infrared Spectra. Journal of the Korean Wood Science and Technology 47(1): 101-109. https://doi.org/10.5658/WOOD.2019.47.1.101
- Yang, S.Y. 2019. Classification of Wood Species using Near-infrared Spectroscopy and Artificial Neural Networks, Doctoral dissertation, Seoul National University