DOI QR코드

DOI QR Code

Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene

  • Kim, Kangsik (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Yoon, Jong Chan (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Jaemin (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Jung Hwa (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Suk Woo (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Yoon, Aram (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Zonghoon (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2019.01.17
  • Accepted : 2019.02.12
  • Published : 2019.04.29

Abstract

Graphene, which is one of the most promising materials for its state-of-the-art applications, has received extensive attention because of its superior mechanical properties. However, there is little experimental evidence related to the mechanical properties of graphene at the atomic level because of the challenges associated with transferring atomically-thin two-dimensional (2D) materials onto microelectromechanical systems (MEMS) devices. In this study, we show successful dry transfer with a gel material of a stable, clean, and free-standing exfoliated graphene film onto a push-to-pull (PTP) device, which is a MEMS device used for uniaxial tensile testing in in situ transmission electron microscopy (TEM). Through the results of optical microscopy, Raman spectroscopy, and TEM, we demonstrate high quality exfoliated graphene on the PTP device. Finally, the stress-strain results corresponding to propagating cracks in folded graphene were simultaneously obtained during the tensile tests in TEM. The zigzag and armchair edges of graphene confirmed that the fracture occurred in association with the hexagonal lattice structure of graphene while the tensile testing. In the wake of the results, we envision the dedicated preparation and in situ TEM tensile experiments advance the understanding of the relationship between the mechanical properties and structural characteristics of 2D materials.

Keywords

References

  1. J. Annett, G.L.W. Cross, Nature 535, 271 (2016). https://doi.org/10.1038/nature18304
  2. R. Bala, A. Marwaha, Eng. Sci. Technol. Int. J. 19, 531 (2016). https://doi.org/10.1016/j.jestch.2015.08.004
  3. L.G. Cancado et al., Nano Lett. 11, 3190 (2011). https://doi.org/10.1021/nl201432g
  4. C.H. Cao, B. Chen, T. Filleter, Y. Sun, Proc. IEEE Micr. Elect. 381-384 (2015).
  5. C.H. Cao, J.Y. Howe, D. Perovic, T. Filleter, Y. Sun, Nanotechnology 27, 28LT01 (2016). https://doi.org/10.1088/0957-4484/27/28/28LT01
  6. H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20, 3557 (2008). https://doi.org/10.1002/adma.200800757
  7. L.Y. Chen, M.R. He, J. Shin, G. Richter, D.S. Gianola, Nat. Mater. 14, 707 (2015). https://doi.org/10.1038/nmat4288
  8. M.F. El-Kady, R.B. Kaner, Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
  9. C. Gammer, J. Kacher, C. Czarnik, O.L. Warren, J. Ciston, A.M. Minor, Appl. Phys. Lett. 109, 081906 (2016). https://doi.org/10.1063/1.4961683
  10. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
  11. F. Guinea, M.I. Katsnelson, A.K. Geim, Nat. Phys. 6, 30 (2010). https://doi.org/10.1038/nphys1420
  12. J. Han, N.M. Pugno, S. Ryu, Nanoscale 7, 15672 (2015). https://doi.org/10.1039/C5NR04134A
  13. K. Kim, V.I. Artyukhov, W. Regan, Y.Y. Liu, M.F. Crommie, B.I. Yakobson, A. Zettl, Nano Lett. 12, 293 (2012). https://doi.org/10.1021/nl203547z
  14. K. Kim et al., Phys. Rev. B 83, 245433 (2011). https://doi.org/10.1103/PhysRevB.83.245433
  15. N.A. Kyeremateng, T. Brousse, D. Pech, Nat. Nano. 12, 7 (2017). https://doi.org/10.1038/nnano.2016.196
  16. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008). https://doi.org/10.1126/science.1157996
  17. G.H. Lee et al., Science 340, 1073 (2013). https://doi.org/10.1126/science.1235126
  18. N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H.C. Neto, M.F. Crommie, Science 329, 544 (2010). https://doi.org/10.1126/science.1191700
  19. H. Li, J.M.T. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q.H. Zhang, H. Zhang, ACS Nano 7, 10344 (2013). https://doi.org/10.1021/nn4047474
  20. Z. Liao et al., Sci. Rep. 7, 211 (2017). https://doi.org/10.1038/s41598-017-00227-3
  21. F. Liu, P.M. Ming, J. Li, Phys. Rev. B 76, 064120 (2007). https://doi.org/10.1103/PhysRevB.76.064120
  22. Y.Y. Liu, A. Dobrinsky, B.I. Yakobson, Phys. Rev. Lett. 105, 235502 (2010). https://doi.org/10.1103/PhysRevLett.105.235502
  23. M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C. A. Achete, A. Jorio, Carbon 48, 1592 (2010). https://doi.org/10.1016/j.carbon.2009.12.057
  24. A.E. Mag-isa, J.H. Kim, H.J. Lee, C.S. Oh, 2D Mater. 2, 034017 (2015).
  25. J.C. Meyer et al., Nat. Mater. 10, 209 (2011). https://doi.org/10.1038/nmat2941
  26. K. Min, N.R. Aluru, Appl. Phys. Lett. 98, 013113 (2011). https://doi.org/10.1063/1.3534787
  27. B. Mortazavi, G. Cuniberti, Nanotechnology 25, 215704 (2014). https://doi.org/10.1088/0957-4484/25/21/215704
  28. H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang, J. Raman Spectrosc. 44, 1018 (2013). https://doi.org/10.1002/jrs.4312
  29. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S. V. Dubonos, A.A. Firsov, Nature 438, 197 (2005). https://doi.org/10.1038/nature04233
  30. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896
  31. Y. Oh, E. Cyrankowski, Z. Shan, S.A.S. Asif, Google patents (2014).
  32. Q.X. Pei, Y.W. Zhang, V.B. Shenoy, Carbon 48, 898 (2010). https://doi.org/10.1016/j.carbon.2009.11.014
  33. F. Pizzocchero, L. Gammelgaard, B.S. Jessen, J.M. Caridad, L. Wang, J. Hone, P. Boggild, T.J. Booth, Nat. Commun. 7, 11894 (2016). https://doi.org/10.1038/ncomms11894
  34. M.A. Rafiee, J. Rafiee, Z. Wang, H.H. Song, Z.Z. Yu, N. Koratkar, ACS Nano 3, 3884 (2009). https://doi.org/10.1021/nn9010472
  35. F. Scarpa, S. Adhikari, A.S. Phani, Nanotechnology 20, 065709 (2009). https://doi.org/10.1088/0957-4484/20/6/065709
  36. C. Si, Z. Liu, W. Duan, F. Liu, Phys. Rev. Lett. 111, 196802 (2013). https://doi.org/10.1103/PhysRevLett.111.196802
  37. J.W. Suk, V. Mancevski, Y.F. Hao, K.M. Liechti, R.S. Ruoff, Phys. Status Solidi RRL 9, 564 (2015). https://doi.org/10.1002/pssr.201510244
  38. P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 84, 035433 (2011). https://doi.org/10.1103/PhysRevB.84.035433
  39. X.G. Wang, K. Chen, Y.Q. Zhang, J.C. Wan, O.L. Warren, J. Oh, J. Li, E. Ma, Z.W. Shan, Nano Lett. 15, 7886 (2015). https://doi.org/10.1021/acs.nanolett.5b02852
  40. P. Zhang et al., Nat. Commun. 5, 5167 (2014). https://doi.org/10.1038/ncomms6167
  41. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005). https://doi.org/10.1038/nature04235
  42. Y.Y. Zhang, C.M. Wang, Y. Cheng, Y. Xiang, Carbon 49, 4511 (2011). https://doi.org/10.1016/j.carbon.2011.06.058
  43. X. Zhao, Q.H. Zhang, D.J. Chen, P. Lu, Macromolecules 43, 2357 (2010) https://doi.org/10.1021/ma902862u

Cited by

  1. A rapid preparation method for in situ nanomechanical TEM tensile specimens vol.36, pp.11, 2019, https://doi.org/10.1557/s43578-021-00167-9