References
- A. Fong, T. Meyer, K. Zala, Making Medical Isotopes: Report of the Task Force on Alternatives for Medical-isotope Production. TRIUMF, Vancouver, 2008.
- Diamond, W., NIM A, 1999(432).
- NEA/OECD, The Supply of Medical Radioisotopes: Review of Potential Molybdenum-99/technetium-99m Production Technologies, 2010.
- X. Hou, et al., Theoretical dosimetry estimations for radioisotopes produced by proton-induced reactions on natural and enriched molybdenum targets, Phys. Med. Biol. 57 (6) (2012) 1499. https://doi.org/10.1088/0031-9155/57/6/1499
-
O. Lebeda, et al., Assessment of radionuclidic impurities in cyclotron produced
$^{99}mTc$ , Nucl. Med. Biol. 39 (8) (2012) 1286-1291. https://doi.org/10.1016/j.nucmedbio.2012.06.009 - J. Lee, Photoproduction of 99mTc with Laser-Compton Scattering Gamma-ray, Master Thesis, Korea Adv. Inst. Science, Techn., Daejeon, Republic of Korea, 2016.
- A. Sandorfi, et al., The fabrication of a Very High Energy Polarized Gamma Ray Beam Facility and a Program of Medium Energy Physics Research at the National Synchrotron Light Source, 1982. Brookhaven National Laboratory Report BNL-32717, BNL Physics Department, Proposal to the Department of Energy.
- J. Stepanek, Parametric study of laser Compton-backscattering from free relativistic electrons, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 412 (1) (1998) 174-182. https://doi.org/10.1016/S0168-9002(98)00099-0
- T. Ogawa, S. Hashimoto, T. Sato, Development of general nuclear resonance fluorescence model, J. Nucl. Sci. Technol. 53 (11) (2016) 1766-1773. https://doi.org/10.1080/00223131.2016.1159148
- T. Sato, et al., Particle and heavy ion transport code system, PHITS, version 2.52, J. Nucl. Sci. Technol. 50 (9) (2013) 913-923. https://doi.org/10.1080/00223131.2013.814553
- Data extracted using the NNDC On-Line Data Service from the ENSDF database, file revised as of (2017) M.R. Bhat, Evaluated Nuclear Structure Data File (ENSDF), in: S.M. Qaim (Ed.), Nuclear Data for Science and Technology, SpringerVerlag, Berlin, Germany, 1992, p. 817.
- J.lvi Blatt, V.F. Weisskopf, Theoretical Nuclear Physics, John Wiley and Sons, lnc., New York, 1952.
- R.B. Firestone, V.S. Shirley, C.M. Baglin, Table of isotopes CD-ROM, 1996, p. 1. Eight Edition Version.
- ur Rehman, H.,J. Lee, Y. Kim, Optimization of the laser-Compton scattering spectrum for the transmutation of high-toxicity and long-living nuclear waste, Ann. Nucl. Energy 105 (2017) 150-160. https://doi.org/10.1016/j.anucene.2017.03.014
- http://accelconf.web.cern.ch/accelconf/ipac2012/talks/tuxb03_talk.pdf.
-
T. Hayakawa, et al., Nondestructive assay of plutonium and minor actinide in spent fuel using nuclear resonance fluorescence with laser Compton scattering
${\gamma}$ -rays, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 621 (1) (2010) 695-700. https://doi.org/10.1016/j.nima.2010.06.096 - J.T. Goorley, M. James, T. Booth, MCNP6 User's Manual, Version 1.0. LA-CP-13-00634, Los Alamos National Laboratory, 2013.
- M. Shimada, R. Hajima, Inverse Compton scattering of coherent synchrotron radiation in an energy recovery linac, Phys. Rev. Spec. Top. Accel. Beams 13 (10) (2010) 100701d. https://doi.org/10.1103/PhysRevSTAB.13.100701
- H.U. Rehman, J. Lee, Y. Kim, Comparison of the laser-Compton scattering and the conventional Bremsstrahlung X-rays for photonuclear transmutation, Int. J. Energy Res. 42 (no. 1) (2018) 236-244. https://doi.org/10.1002/er.3904