• Title/Summary/Keyword: Energy recovery LINAC

Search Result 3, Processing Time 0.015 seconds

Design Parameter of CW Klystron System for KOMAC

  • Lee, J. H.;H. J. Kwon;Kim, T. Y.;K. H. Chung;H. S. Kang;Park, S. J.;J. S. Oh;Kim, Dong-Il
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.963-966
    • /
    • 1998
  • The KOMAC(KOrea Multi-purpose Accelerator Complex) linac is composed of RFQ(Radio Frequency Quadrupole), CCDTL(Coupled Cavity Drift Tube Linac) and SC(Superconducting)-linac. The required CW output power of RF system is about 25㎿ for 20㎿ proton beam power. Therefore high power RF sources are necessary for cost saving and reliability improvement. The number of klystrons for 0.5 ㎿ at 350MHz and 1 ㎿ at 700MHz are 1 and 31, respectively. In this paper, the design parameters of the klystron system including power supply and energy recovery system are presented.

  • PDF

A feasibility study on photo-production of 99mTc with the nuclear resonance fluorescence

  • Ju, Kwangho;Lee, Jiyoung;ur Rehman, Haseeb;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.176-189
    • /
    • 2019
  • This paper presents a feasibility study for producing the medical isotope $^{99m}Tc$ using the hazardous and currently wasted radioisotope $^{99}Tc$. This can be achieved with the nuclear resonance fluorescence (NRF) phenomenon, which has recently been made applicable due to high-intensity laser Compton scattering (LCS) photons. In this work, 21 NRF energy states of $^{99}Tc$ have been identified as potential contributors to the photo-production of $^{99m}Tc$ and their NRF cross-sections are evaluated by using the single particle estimate model and the ENSDF data library. The evaluated cross sections are scaled using known measurement data for improved accuracy. The maximum LCS photon energy is adjusted in a way to cover all the significant excited states that may contribute to $^{99m}Tc$ generation. An energy recovery LINAC system is considered as the LCS photon source and the LCS gamma spectrum is optimized by adjusting the electron energy to maximize $^{99m}Tc$ photo-production. The NRF reaction rate for $^{99m}Tc$ is first optimized without considering the photon attenuations such as photo-atomic interactions and self-shielding due to the NRF resonance itself. The change in energy spectrum and intensity due to the photo-atomic reactions has been quantified using the MCNP6 code and then the NRF self-shielding effect was considered to obtain the spectrums that include all the attenuation factors. Simulations show that when a $^{99}Tc$ target is irradiated at an intensity of the order $10^{17}{\gamma}/s$ for 30 h, 2.01 Ci of $^{99m}Tc$ can be produced.

Status and Prospect of Free Electron Lasers (자유전자레이저의 개발현황과 전망)

  • Lee, Byung-Cheol;Jeong, Young-Ug;Park, Seong-Hee;Hahn, Sang-June
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.435-450
    • /
    • 2006
  • Free electron lasers (FELs) are promising sources of coherent radiation that can provide users with radiations having a wide-range frequency-tunability and good spectral characteristics for basic science and industrial applications. Especially in Terahertz or X-ray ranges of spectrum, FELs can generate much stronger radiations than conventional light sources. In this paper, we introduce the working principles and key technologies of FELs, the status and the prospects of FEL developments.